化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5788-5798.DOI: 10.11949/0438-1157.20250326
• 专栏:能源利用过程中的多相流与传热 • 上一篇
收稿日期:2025-03-31
修回日期:2025-04-30
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
金辉
作者简介:王俊英(2000—),女,博士研究生,1982531019@qq.com
基金资助:Received:2025-03-31
Revised:2025-04-30
Online:2025-11-25
Published:2025-12-19
Contact:
Hui JIN
摘要:
石油在开采过程中会出现部分原油难以被提取的问题,造成采收率降低和资源浪费。使用超临界CO2这一绿色溶剂驱动石油流动可以强化石油开采,提高油田采收率。使用分子动力学模拟研究了超临界CO2与石油各个组分之间的相容性,并对溶解过程进行了详细分析,同时研究了助溶剂对溶解过程的强化作用。结果表明,超临界CO2的溶解度参数值在低温条件下对压力变化的敏感性低于在高温条件下对压力变化的敏感性。随着碳数的增加,烷烃和芳香烃的溶解度参数逐渐升高,而环烷烃的溶解度参数并不随碳数的增加发生明显变化。此外,添加助溶剂可有效提升超临界CO2对石油烃的溶解能力,其中甲醇的助溶效果最好,加入10%的甲醇可使超临界CO2与苯并芘的溶解度参数差值降低25.49%。
中图分类号:
王俊英, 金辉. 超临界CO2与石油烃溶解度参数的分子动力学研究[J]. 化工学报, 2025, 76(11): 5788-5798.
Junying WANG, Hui JIN. Molecular dynamics investigation on the solubility parameters of supercritical CO2 and petroleum hydrocarbon[J]. CIESC Journal, 2025, 76(11): 5788-5798.
| 类型 | 名称 | 分子式 | 摩尔质量/(g/mol) |
|---|---|---|---|
| 烷烃 | 正己烷 | C6H14 | 86.178 |
| 正癸烷 | C10H22 | 142.286 | |
| 正二十烷 | C20H42 | 282.556 | |
| 环烷烃 | 环己烷 | C6H12 | 84.162 |
| 十氢萘 | C10H18 | 138.254 | |
| 芳香烃 | 苯 | C6H6 | 78.114 |
| 萘 | C10H8 | 128.174 | |
| 苯并芘 | C20H12 | 252.316 | |
| 树脂/沥青质 | C26H32S | 376.602 |
表1 石油烃的有机小分子模型
Table 1 Organic small molecule model of petroleum hydrocarbons
| 类型 | 名称 | 分子式 | 摩尔质量/(g/mol) |
|---|---|---|---|
| 烷烃 | 正己烷 | C6H14 | 86.178 |
| 正癸烷 | C10H22 | 142.286 | |
| 正二十烷 | C20H42 | 282.556 | |
| 环烷烃 | 环己烷 | C6H12 | 84.162 |
| 十氢萘 | C10H18 | 138.254 | |
| 芳香烃 | 苯 | C6H6 | 78.114 |
| 萘 | C10H8 | 128.174 | |
| 苯并芘 | C20H12 | 252.316 | |
| 树脂/沥青质 | C26H32S | 376.602 |
| 压力/MPa | δ实验/MPa1/2 | δ模拟/MPa1/2 | 相对误差/% |
|---|---|---|---|
| 8.5 | 4.9 | 4.997 | 1.983 |
| 10 | 7.7 | 8.148 | 5.819 |
| 20 | 14.3 | 14.189 | 0.777 |
| 25 | 15 | 14.619 | 2.537 |
| 30 | 15.6 | 15.143 | 2.931 |
| 40 | 16.4 | 15.802 | 3.645 |
表2 318 K,不同压力下超临界CO2的溶解度参数与实验值的比较结果
Table 2 Comparison results of the solubility parameter of supercritical CO2 with experimental values under different pressure at 318 K
| 压力/MPa | δ实验/MPa1/2 | δ模拟/MPa1/2 | 相对误差/% |
|---|---|---|---|
| 8.5 | 4.9 | 4.997 | 1.983 |
| 10 | 7.7 | 8.148 | 5.819 |
| 20 | 14.3 | 14.189 | 0.777 |
| 25 | 15 | 14.619 | 2.537 |
| 30 | 15.6 | 15.143 | 2.931 |
| 40 | 16.4 | 15.802 | 3.645 |
| 甲醇摩尔分数 | δ实验/MPa1/2 | δ模拟/MPa1/2 | 相对误差/% |
|---|---|---|---|
| 0 | 14.5 | 14.242 | 1.782 |
| 0.1 | 15.8 | 15.481 | 2.021 |
| 0.2 | 17.4 | 16.955 | 2.557 |
| 0.3 | 18.9 | 18.526 | 1.979 |
表3 318 K,70 MPa下超临界CO2-甲醇混合系统的溶解度参数与实验值的比较结果
Table 3 Comparison results of the solubility parameter of the supercritical CO2-methanol mixed system with experimental values at 318 K, 70 MPa
| 甲醇摩尔分数 | δ实验/MPa1/2 | δ模拟/MPa1/2 | 相对误差/% |
|---|---|---|---|
| 0 | 14.5 | 14.242 | 1.782 |
| 0.1 | 15.8 | 15.481 | 2.021 |
| 0.2 | 17.4 | 16.955 | 2.557 |
| 0.3 | 18.9 | 18.526 | 1.979 |
| 温度/K | 压力/MPa | 总能/(J/m3) | 范德华能/(J/m3) | 静电能/(J/m3) | 其他/(J/m3) |
|---|---|---|---|---|---|
| 313 | 10 | 1.34×108 | 7.68×107 | 5.45×107 | 2.92×106 |
| 15 | 1.63×108 | 9.28×107 | 6.65×107 | 3.57×106 | |
| 20 | 1.82×108 | 1.03×108 | 7.47×107 | 3.99×106 | |
| 25 | 1.96×108 | 1.11×108 | 8.10×107 | 4.32×106 | |
| 30 | 2.07×108 | 1.16×108 | 8.63×107 | 4.57×106 | |
| 333 | 10 | 2.44×107 | 1.43×107 | 9.56×106 | 5.00×105 |
| 15 | 1.11×108 | 6.43×107 | 4.38×107 | 2.44×106 | |
| 20 | 1.37×108 | 7.90×107 | 5.48×107 | 3.05×106 | |
| 25 | 1.60×108 | 9.19×107 | 6.45×107 | 3.58×106 | |
| 30 | 1.73×108 | 9.90×107 | 7.03×107 | 3.89×106 | |
| 353 | 10 | 1.30×107 | 7.75×106 | 4.98×106 | 2.67×105 |
| 15 | 5.18×107 | 3.07×107 | 1.99×107 | 1.13×106 | |
| 20 | 9.73×107 | 5.73×107 | 3.78×107 | 2.20×106 | |
| 25 | 1.20×108 | 7.03×107 | 4.70×107 | 2.73×106 | |
| 30 | 1.39×108 | 8.08×107 | 5.48×107 | 3.18×106 | |
| 373 | 10 | 9.11×106 | 5.50×106 | 3.42×106 | 1.92×105 |
| 15 | 2.88×107 | 1.73×107 | 1.09×107 | 6.37×105 | |
| 20 | 6.18×107 | 3.69×107 | 2.34×107 | 1.41×106 | |
| 25 | 8.84×107 | 5.26×107 | 3.37×107 | 2.04×106 | |
| 30 | 1.10×108 | 6.54×107 | 4.24×107 | 2.57×106 |
表4 超临界CO2在不同温度和压力下的内聚能密度
Table 4 The cohesive energy density of supercritical CO2 at different temperature and pressure
| 温度/K | 压力/MPa | 总能/(J/m3) | 范德华能/(J/m3) | 静电能/(J/m3) | 其他/(J/m3) |
|---|---|---|---|---|---|
| 313 | 10 | 1.34×108 | 7.68×107 | 5.45×107 | 2.92×106 |
| 15 | 1.63×108 | 9.28×107 | 6.65×107 | 3.57×106 | |
| 20 | 1.82×108 | 1.03×108 | 7.47×107 | 3.99×106 | |
| 25 | 1.96×108 | 1.11×108 | 8.10×107 | 4.32×106 | |
| 30 | 2.07×108 | 1.16×108 | 8.63×107 | 4.57×106 | |
| 333 | 10 | 2.44×107 | 1.43×107 | 9.56×106 | 5.00×105 |
| 15 | 1.11×108 | 6.43×107 | 4.38×107 | 2.44×106 | |
| 20 | 1.37×108 | 7.90×107 | 5.48×107 | 3.05×106 | |
| 25 | 1.60×108 | 9.19×107 | 6.45×107 | 3.58×106 | |
| 30 | 1.73×108 | 9.90×107 | 7.03×107 | 3.89×106 | |
| 353 | 10 | 1.30×107 | 7.75×106 | 4.98×106 | 2.67×105 |
| 15 | 5.18×107 | 3.07×107 | 1.99×107 | 1.13×106 | |
| 20 | 9.73×107 | 5.73×107 | 3.78×107 | 2.20×106 | |
| 25 | 1.20×108 | 7.03×107 | 4.70×107 | 2.73×106 | |
| 30 | 1.39×108 | 8.08×107 | 5.48×107 | 3.18×106 | |
| 373 | 10 | 9.11×106 | 5.50×106 | 3.42×106 | 1.92×105 |
| 15 | 2.88×107 | 1.73×107 | 1.09×107 | 6.37×105 | |
| 20 | 6.18×107 | 3.69×107 | 2.34×107 | 1.41×106 | |
| 25 | 8.84×107 | 5.26×107 | 3.37×107 | 2.04×106 | |
| 30 | 1.10×108 | 6.54×107 | 4.24×107 | 2.57×106 |
| 温度/K | 压力/MPa | 溶解度参数/MPa1/2 |
|---|---|---|
| 313 | 20 | 22.97 |
| 333 | 20 | 22.78 |
| 353 | 20 | 22.65 |
| 373 | 20 | 22.38 |
| 333 | 10 | 22.76 |
| 333 | 15 | 22.79 |
| 333 | 25 | 22.82 |
| 333 | 30 | 22.82 |
表5 不同温度和压力下苯并芘的溶解度参数
Table 5 Solubility parameter of benzo[a]pyrene at different temperature and pressure
| 温度/K | 压力/MPa | 溶解度参数/MPa1/2 |
|---|---|---|
| 313 | 20 | 22.97 |
| 333 | 20 | 22.78 |
| 353 | 20 | 22.65 |
| 373 | 20 | 22.38 |
| 333 | 10 | 22.76 |
| 333 | 15 | 22.79 |
| 333 | 25 | 22.82 |
| 333 | 30 | 22.82 |
| [1] | 张晓辉. R11油藏注CO2提高采收率数值模拟应用研究[D]. 成都: 西南石油大学, 2012. |
| Zhang X H. Study on the application of numerical simulation to enhance oil recovery by CO2 injection in R11 reservoir[D]. Chengdu: Southwest Petroleum University, 2012. | |
| [2] | 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1): 20-28. |
| Qin J S, Li Y L, Wu D B, et al. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20-28. | |
| [3] | 李向良. 温度和注入压力对二氧化碳驱油效果的影响规律实验[J]. 油气地质与采收率, 2015, 22(1): 84-92. |
| Li X L. Experimental study on the effect of temperature and injection pressure on CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(1): 84-92. | |
| [4] | 李蕾, 郑自刚, 杨承伟, 等. 超低渗油藏超临界CO2驱油特征及原油动用能力[J]. 科学技术与工程, 2021, 21(29): 12551-12558. |
| Li L, Zheng Z G, Yang C W, et al. Displacement characteristics and capacity of supercritical CO2 flooding in ultra low permeability reservoirs[J]. Science, Technology and Engineering, 2021, 21(29): 12551-12558. | |
| [5] | 尚德淼, 吴捷, 贾宝, 等. 陆相页岩油藏开发中超临界CO2的应用前景展望[J]. 当代化工, 2021, 50(7): 1650-1653. |
| Shang D M, Wu J, Jia B, et al. Application prospect of supercritical CO2 in continental shale reservoir development[J]. Contemporary Chemical Industry, 2021, 50(7): 1650-1653. | |
| [6] | 朱宏跃, 银建中. 超临界CO2技术在能源领域的若干应用[J]. 应用科技, 2019, 46(6): 85-91. |
| Zhu H Y, Yin J Z. Some applications of supercritical CO2 technology in energy field[J]. Applied Science and Technology, 2019, 46(6): 85-91. | |
| [7] | Wang J Y, Tian K, Li Y, et al. Diffusion coefficients of polycyclic aromatic hydrocarbons in supercritical carbon dioxide: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2024, 409: 12547. |
| [8] | 王洁. 超临界CO2萃取葡萄籽油的工艺研究及数值模拟[D]. 杨凌: 西北农林科技大学, 2004. |
| Wang J. Study on supercritical CO2 extraction of grape seed oil and its numerical simulation[D]. Yangling: Northwest A & F University, 2004. | |
| [9] | 卢义刚, 孙小广. 液态和超临界态二氧化碳的非线性声学性质[J]. 化工学报, 2009, 60(2): 287-293. |
| Lu Y G, Sun X G. Nonlinear acoustical properties of liquid and supercritical carbon dioxide[J]. CIESC Journal, 2009, 60(2): 287-293. | |
| [10] | Rudyk S, Spirov P, Sogaard E. Application of GC-MS chromatography for the analysis of the oil fractions extracted by supercritical CO2 at high pressure[J]. Fuel, 2013, 106: 139-146. |
| [11] | Huang S X, Wang P J, Zhang Y L, et al. Energy, exergy, and economic analysis of a low-energy consumption CO2 capture system with ionic liquid [DEME][TF2N][J]. ACS Sustainable Chemistry & Engineering, 2024, 12(39): 14380-14395. |
| [12] | 张丽雅, 宋兆杰, 马平华, 等. 稠油油藏注超临界二氧化碳驱油影响因素分析[J]. 地质与勘探, 2017, 53(4): 801-806. |
| Zhang L Y, Song Z J, Ma P H, et al. Analysis on influential factors of supercritical carbon dioxide flooding in heavy-oil reservoirs[J]. Geology and Exploration[J]. Geology and Exploration, 2017, 53(4): 801-806. | |
| [13] | 李孟涛, 单文文, 刘先贵, 等. 超临界二氧化碳混相驱油机理实验研究[J]. 石油学报, 2006, 27(3): 80-83. |
| Li M T, Shan W W, Liu X G, et al. Laboratory study on miscible oil displacement mechanism of supercritical carbon dioxide[J]. Acta Petrolei Sinica, 2006, 27(3): 80-83. | |
| [14] | 张杰, 张羽臣, 邢希金, 等. 海上含油钻屑超临界CO2萃取除油研究[J]. 石油机械, 2019, 47(11): 52-58. |
| Zhang J, Zhang Y C, Xing X J, et al. Study on oily cutting de-oiling by supercritical CO2 extraction in offshore field[J]. China Petroleum Machinery, 2019, 47(11): 52-58. | |
| [15] | Wang J Y, Ding W J, Zhang B W, et al. Polycyclic aromatic hydrocarbons dissolution in supercritical carbon dioxide by molecular dynamics simulation[J]. Journal of Molecular Liquids, 2023, 391: 123358. |
| [16] | Feng H J, Gao W, Sun Z F, et al. Molecular dynamics simulation of diffusion and structure of some n-alkanes in near critical and supercritical carbon dioxide at infinite dilution[J]. The Journal of Physical Chemistry B, 2013, 117(41): 12525-12534. |
| [17] | 张军, 房体明, 王业飞, 等. 烷烃油滴在超临界二氧化碳中溶解的分子动力学模拟[J]. 中国石油大学学报(自然科学版), 2015, 39(2): 124-129. |
| Zhang J, Fang T M, Wang Y F, et al. Molecular dynamics simulation of dissolution of n-alkanes droplets in supercritical carbon dioxide[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(2): 124-129. | |
| [18] | Lv W, Gong H J, Li Y J, et al. Dissolution behaviors of alkyl block polyethers in CO2: experimental measurements and molecular dynamics simulations[J]. Chemical Engineering Science, 2020, 228: 115953. |
| [19] | 吴润楠, 魏兵, 邹鹏, 等. 超临界CO2对普通稠油和超稠油物性的影响规律[J]. 油田化学, 2018, 35(3): 440-446. |
| Wu R N, Wei B, Zou P, et al. Effect of supercritical CO2 on the physical properties of conventional heavy oil and extra-heavy oil[J]. Oilfield Chemistry, 2018, 35(3): 440-446. | |
| [20] | 王晓燕, 章杨, 严曦, 等. 超临界二氧化碳对原油萃取作用分析[J]. 油田化学, 2023, 40(2): 317-321. |
| Wang X Y, Zhang Y, Yan X, et al. Extraction effect of supercritical carbon dioxide on crude oil[J]. Oilfield Chemistry, 2023, 40(2): 317-321. | |
| [21] | Collell J, Ungerer P, Galliero G, et al. Molecular simulation of bulk organic matter in type Ⅱ shales in the middle of the oil formation window[J]. Energy & Fuels, 2014, 28(12): 7457-7466. |
| [22] | Wang J Y, Jin H. Molecular dynamics simulation investigation of the solubility parameter of supercritical carbon dioxide-cosolvent[C]//2024 9th International Conference on Smart and Sustainable Technologies (SpliTech). Bol and Split, Croatia: IEEE, 2024: 1-5. |
| [23] | 王冬爽. 促进剂对聚酯在D5中微观结构影响的分子模拟研究[D]. 郑州: 中原工学院, 2023. |
| Wang D S. Molecular simulation study on the effect of accelerator on the microstructure of polyester in D5[D]. Zhengzhou: Zhongyuan University of Technology, 2023. | |
| [24] | Du Y Z, Zhang H, Li X L, et al. Molecular dynamics study on the suitable compatibility conditions of a CO2-cosolvent-light hydrocarbon system by calculating the solubility parameters[J]. Energy & Fuels, 2020, 34(3): 3483-3492. |
| [25] | 王芳. 脂肪醇聚醚表面活性剂降低CO2驱混相压力研究[D]. 东营: 中国石油大学(华东), 2016. |
| Wang F. Study on reducing miscible pressure of CO2 flooding by aliphatic alcohol polyether surfactant[D]. Dongying: China University of Petroleum (Huadong), 2016. | |
| [26] | Lu Y J, Han J X, Yang M P, et al. Molecular simulation of supercritical CO2 extracting organic matter from coal based on the technology of CO2-ECBM[J]. Energy, 2023, 266: 126393. |
| [27] | Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE Journal, 2001, 47(7): 1676-1682. |
| [28] | Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980, 72(4): 2384-2393. |
| [29] | Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. |
| [30] | Wang J Y, Cao W, Wei W W, et al. Adsorption characteristic analysis of PAHs on activated carbon with different functional groups by molecular simulation[J]. Environmental Science and Pollution Research International, 2023, 30(12): 32452-32463. |
| [31] | Ding W J, Jin H, Zhao Q Y, et al. Dissolution of polycyclic aromatic hydrocarbons in supercritical water in hydrogen production process: a molecular dynamics simulation study[J]. International Journal of Hydrogen Energy, 2020, 45(52): 28062-28069. |
| [32] | Williams L L, Rubin J B, Edwards H W. Calculation of Hansen solubility parameter values for a range of pressure and temperature conditions, including the supercritical fluid region[J]. Industrial & Engineering Chemistry Research, 2004, 43(16): 4967-4972. |
| [33] | Ougiyanagi J, Meguro Y, Yoshida Z, et al. Solvent effect on distribution ratio of Pd(Ⅱ) in supercritical carbon dioxide extraction and solvent extraction using 2-methyl-8-quinolinol[J]. Talanta, 2003, 59(6): 1189-1198. |
| [34] | 成新法, 冯长根, 王耘, 等. 超临界CO2萃取中草药活性成分溶剂特性研究[J]. 化学通报, 2000(3): 66. |
| Cheng X F, Feng C G, Wang Y, et al. Study on solvent characteristics of supercritical CO2 extraction of active components from Chinese herbal medicines[J]. Chemistry, 2000(3): 66. | |
| [35] | Wang J Y, Guan M X, Zhang J, et al. Molecular dynamics simulation of polycyclic aromatic hydrocarbons solvation behavior in supercritical carbon dioxide under different pressure and temperature[J]. The Journal of Supercritical Fluids, 2024, 208: 106233. |
| [1] | 胡国祥, 朱忆魁, 龙华, 刘晓雯, 熊勤钢. 组分配比影响氯化胆碱-乳酸低共熔溶剂碱木质素溶解度的底层机理研究[J]. 化工学报, 2025, 76(9): 4449-4461. |
| [2] | 李相海, 赖德林, 孔纲, 周健. 双仿生表面水下疏油协同机制的分子动力学模拟研究[J]. 化工学报, 2025, 76(9): 4551-4562. |
| [3] | 高正, 汪辉, 屈治国. 数据驱动辅助高通量筛选阴离子柱撑金属有机框架储氢[J]. 化工学报, 2025, 76(8): 4259-4272. |
| [4] | 张荟钦, 赵泓竣, 付正军, 庄力, 董凯, 贾添智, 曹雪丽, 孙世鹏. 纳滤膜在离子型稀土浸出液提浓中的应用研究[J]. 化工学报, 2025, 76(8): 4095-4107. |
| [5] | 林嘉豪, 付芳忠, 叶昊辉, 胡金, 姚明灿, 范鹤林, 王旭, 王瑞祥, 徐志峰. NdF3含量对NdF3-LiF熔盐局域结构和输运性质的影响[J]. 化工学报, 2025, 76(8): 3834-3841. |
| [6] | 王小令, 王绍清, 赵云刚, 常方哲, 穆瑞峰. 基于ReaxFF MD模拟的煤加氢热解有机Ca转化机制研究[J]. 化工学报, 2025, 76(8): 4297-4309. |
| [7] | 乔亮, 李尚, 刘新亮, 王明, 张沛, 侯影飞. 三元共聚物稠油降黏剂的合成及分子模拟研究[J]. 化工学报, 2025, 76(7): 3686-3695. |
| [8] | 张晓钰, 兰金鑫, 黎昕, 曹石林, 高海丽, 马晓娟. [Emim]Ac-[Emim]OH-DMSO三元体系溶解纤维素的研究[J]. 化工学报, 2025, 76(7): 3226-3234. |
| [9] | 高照, 吴熙, 夏丹, 张霖宙. 石油加工分子管理平台热力学及分离单元模块开发[J]. 化工学报, 2025, 76(7): 3212-3225. |
| [10] | 丁宏鑫, 干文翔, 赵雍洋, 贾润泽, 康子祺, 赵玉隆, 向勇. X65钢焊接接头在超临界CO2相及富H2O相中的腐蚀机理研究[J]. 化工学报, 2025, 76(7): 3426-3435. |
| [11] | 徐鹏国, 孟子衡, 朱干宇, 李会泉, 王晨晔, 孙振华, 田国才. 粗碳酸锂CO2微气泡深度碳化工艺与动力学研究[J]. 化工学报, 2025, 76(7): 3325-3338. |
| [12] | 李姿睿, 齐凯, 王军, 夏国栋. 基于Janus纳米通道的脱盐过程分子动力学模拟研究[J]. 化工学报, 2025, 76(7): 3531-3538. |
| [13] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
| [14] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| [15] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号
