化工学报

• •    

磁性纳米流体颗粒定向排布与各向异性导热的数值模拟研究

武顺杰1(), 蔡容容1(), Eliseev A.A.2, 张立志1()   

  1. 1.华南理工大学化学与化工学院,广东 广州 510640
    2.Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, 1b73, Moscow 119991, Russia
  • 收稿日期:2025-04-18 修回日期:2025-07-07 出版日期:2025-07-08
  • 通讯作者: 蔡容容,张立志
  • 作者简介:武顺杰(1998—),男,博士研究生,cesjwu@mail.scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(51936005);国家自然科学基金项目(52176155);广州市基础与应用基础研究基金项目(2024A04J9884)

Numerical simulation study on particle orientation and anisotropic thermal conductivity in magnetic nanofluids

Shunjie WU1(), Rongrong CAI1(), A.A. Eliseev2, Lizhi ZHANG1()   

  1. 1.School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
    2.Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory, 1b73, Moscow 119991, Russia
  • Received:2025-04-18 Revised:2025-07-07 Online:2025-07-08
  • Contact: Rongrong CAI, Lizhi ZHANG

摘要:

磁性纳米流体因其独特的磁诱导定向排布特性与传热强化性能,在能源工程领域具有重要应用。利用格子Boltzmann方法(LBM)与离散单元法(DEM),建立了包括磁力的多作用力颗粒动力学模型。创新性地引入取向张量定量表征不同磁场下的颗粒链空间结构。结果表明,随着磁场强度的增大,颗粒沿磁场方向的定向排布程度逐渐提高。在200、500和1000 G的磁场强度下,磁场方向的取向张量分量分别为0.506、0.758及0.972。进一步采用热格子Boltzmann方法(T-LBM)模拟了磁场调控下的导热特性,揭示了取向张量通过表征颗粒链的空间构型来有效量化各向异性导热的机制。建立了考虑取向张量的热导率修正模型,该模型展示出了对磁诱导各向异性热导率良好的预测能力。

关键词: 磁性纳米流体, 颗粒聚集, 两相流, 数值模拟, 热传导

Abstract:

Magnetic nanofluids have significant applications in the field of energy engineering due to their unique magnetically induced orientation characteristics and enhanced heat transfer capabilities. A multi-force particle dynamics model, incorporating magnetic forces, was developed using the lattice Boltzmann method (LBM) coupled with the discrete element method (DEM). The orientation tensor was innovatively introduced to quantitatively characterize the spatial structure of particle chains under varying magnetic fields. The results show that the degree of particle alignment along the magnetic field direction increases with the strength of the applied field. Under magnetic field strengths of 200, 500, and 1000 G, the orientation tensor components in the magnetic field direction were 0.506, 0.758, and 0.972, respectively. Additionally, the thermal lattice Boltzmann method (T-LBM) was employed to simulate the thermal conductivity under magnetic field regulation. The mechanism by which the orientation tensor effectively quantifies anisotropic thermal conductivity through the characterization of the spatial configuration of particle chains was elucidated. A modified model incorporating the orientation tensor was proposed, demonstrating good predictive capability for magnetically induced anisotropic thermal conductivity.

Key words: magnetic nanofluids, particle aggregation, two-phase flow, numerical simulation, heat conduction

中图分类号: