• •
收稿日期:2025-04-28
修回日期:2025-06-11
出版日期:2025-07-28
通讯作者:
刘新健,饶中浩
作者简介:任珂(2001—),女,硕士研究生,202221301015@stu.hebut.edu.cn
基金资助:
Ke REN1,2(
), Xinjian LIU1,2(
), Zhonghao RAO1,2(
)
Received:2025-04-28
Revised:2025-06-11
Online:2025-07-28
Contact:
Xinjian LIU, Zhonghao RAO
摘要:
相变微胶囊在液体介质中的分散稳定性是潜热型功能流体服役性能的关键影响因素。通过添加分散剂可强化潜热型功能流体的稳定性,但分散剂本征特性和服役环境等因素对其稳定性的影响规律和调控机理尚不清晰。因此,本文构建了潜热型功能流体的粗粒化分子动力学模型,研究了非离子型、阴离子型和阳离子型分散剂微观结构、组分及温度对潜热型功能流体稳定性的影响规律。结果表明,添加分散剂可改善功能流体中胶囊团聚现象,但分散剂类型和温度对稳定性影响存在显著差异;分散剂对潜热型功能流体分散稳定的促进作用由大到小依次为:非离子型聚乙烯醇(PVA)、阴离子型十二烷基硫酸钠(SDS)、阳离子型十六烷基三甲基溴化铵(CTAB)。
中图分类号:
任珂, 刘新健, 饶中浩. 潜热型功能流体分散稳定性强化及调控机理研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250453.
Ke REN, Xinjian LIU, Zhonghao RAO. Research on the enhancement and regulation mechanisms of dispersion stability of latent heat functional fluids[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250453.
| 体系 | 尺寸 (nm3) | 珠子类型及数量 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| H2O | C18 | MF | SDS | Na+ | CTAB | Br- | PVA | ||
| M | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | |
| MS1 | 30×30×60 | 12000 | 1200 | 20000 | 300 | 300 | 0 | 0 | |
| MS2 | 30×30×60 | 12000 | 1200 | 20000 | 600 | 600 | 0 | 0 | |
| MS3 | 30×30×60 | 12000 | 1200 | 20000 | 900 | 900 | 0 | 0 | |
| MC1 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 300 | 300 | |
| MC2 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 600 | 600 | |
| MC3 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 900 | 900 | |
| MP1 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 300 |
| MP2 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 600 |
| MP3 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 900 |
表1 潜热型功能流体模型参数
Table 1 Latent heat functional fluid model parameters
| 体系 | 尺寸 (nm3) | 珠子类型及数量 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| H2O | C18 | MF | SDS | Na+ | CTAB | Br- | PVA | ||
| M | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | |
| MS1 | 30×30×60 | 12000 | 1200 | 20000 | 300 | 300 | 0 | 0 | |
| MS2 | 30×30×60 | 12000 | 1200 | 20000 | 600 | 600 | 0 | 0 | |
| MS3 | 30×30×60 | 12000 | 1200 | 20000 | 900 | 900 | 0 | 0 | |
| MC1 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 300 | 300 | |
| MC2 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 600 | 600 | |
| MC3 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 900 | 900 | |
| MP1 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 300 |
| MP2 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 600 |
| MP3 | 30×30×60 | 12000 | 1200 | 20000 | 0 | 0 | 0 | 0 | 900 |
| 体系 | Depcm (10-6 cm2/s) | |
|---|---|---|
| 300K | 350K | |
| M | 0.159 | 0.367 |
| MS1 | 0.692 | 0.949 |
| MS2 | 0.331 | 0.828 |
| MS3 | 0.170 | 0.605 |
| MC1 | 0.867 | 0.929 |
| MC2 | 0.348 | 0.740 |
| MC3 | 0.335 | 0.569 |
| MP1 | 0.403 | 0.457 |
| MP2 | 0.185 | 0.450 |
| MP3 | 0.166 | 0.403 |
表2 不同悬浮液体系中微胶囊的扩散系数
Table 2 Diffusion coefficients of dispersants and microcapsules in different suspension systems
| 体系 | Depcm (10-6 cm2/s) | |
|---|---|---|
| 300K | 350K | |
| M | 0.159 | 0.367 |
| MS1 | 0.692 | 0.949 |
| MS2 | 0.331 | 0.828 |
| MS3 | 0.170 | 0.605 |
| MC1 | 0.867 | 0.929 |
| MC2 | 0.348 | 0.740 |
| MC3 | 0.335 | 0.569 |
| MP1 | 0.403 | 0.457 |
| MP2 | 0.185 | 0.450 |
| MP3 | 0.166 | 0.403 |
| [1] | Xu Q, Zhu L D, Pei Y Q, et al. Heat transfer enhancement performance of microencapsulated phase change materials latent functional thermal fluid in solid/liquid phase transition regions[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124461. |
| [2] | 鲁进利, 郝英立. 细小尺度下潜热型功能热流体压降与传热特性[J]. 化工学报, 2010, 61(6): 1385-1392. |
| Lu J L, Hao Y L. Pressure drop and heat transfer characteristics of latent functional thermal fluid in mini-scale[J]. CIESC Journal, 2010, 61(6): 1385-1392. | |
| [3] | 于云雁, 赵树兴, 甄子亚, 等. 潜热型功能流体太阳能供暖集热系统集热效果实验研究[J]. 太阳能学报, 2021, 42(10): 135-139. |
| Yu Y Y, Zhao S X, Zhen Z Y, et al. Experimental research on the efficiency of solar collection system with latent functional thermal fluid for heating[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 135-139. | |
| [4] | 石姗姗, 钱钊, 姜涛, 等. 高分子相变材料的导热改性研究综述[J]. 塑料工业, 2022, 50(2): 1-5. |
| Shi S S, Qian Z, Jiang T, et al. Review on thermal conductivity modification of polymer phase change materials[J]. China Plastics Industry, 2022, 50(2): 1-5. | |
| [5] | Delgado M, Lázaro A, Mazo J, et al. Experimental analysis of a microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow[J]. Applied Thermal Engineering, 2012, 36: 370-377. |
| [6] | 李建立, 刘录. 用于功能热流体的相变材料微胶囊力学性能研究进展[J]. 化工进展, 2015, 34(7): 1928-1932. |
| Li J L, Liu L. Research progress in mechanical properties of microencapsulated phase change materials used as functional thermal fluid[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1928-1932. | |
| [7] | Jin W Z, Huang Q H, Huang H M, et al. The preparation of a suspension of microencapsulated phase change material (MPCM) and thermal conductivity enhanced by MXene for thermal energy storage[J]. Journal of Energy Storage, 2023, 73: 108868. |
| [8] | 冀林仙, 史晓滨, 郑保忠. 微胶囊悬浮剂稳定性研究[J]. 农业与技术, 2009, 29(3): 48-49. |
| Ji L X, Shi X B, Zheng B Z. Study on stability of microcapsule suspending agent[J]. Agriculture & Technology, 2009, 29(3): 48-49. | |
| [9] | Chen R, Ge X, Zhong Y, et al. Experimental study of phase change microcapsule-based liquid cooling for battery thermal management[J]. International Communications in Heat and Mass Transfer, 2023, 146: 106912. |
| [10] | López-Pedrajas D, Borreguero A M, Ramos F J, et al. Influence of the dispersion characteristics for producing thermoregulating nano phase change slurries[J]. Chemical Engineering Journal, 2023, 452: 139034. |
| [11] | Verma C, Goni L K M O, Yaagoob I Y, et al. Polymeric surfactants as ideal substitutes for sustainable corrosion protection: a perspective on colloidal and interface properties[J]. Advances in Colloid and Interface Science, 2023, 318: 102966. |
| [12] | Tadros T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions[J]. Advances in Colloid and Interface Science, 2004, 108: 227-258. |
| [13] | Zhang G H, Zhao C Y. Thermal and rheological properties of microencapsulated phase change materials[J]. Renewable Energy, 2011, 36(11): 2959-2966. |
| [14] | Al-Shannaq R, Farid M, Al-Muhtaseb S, et al. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials[J]. Solar Energy Materials and Solar Cells, 2015, 132: 311-318. |
| [15] | Huang L, Petermann M, Doetsch C. Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications[J]. Energy, 2009, 34(9): 1145-1155. |
| [16] | Han F, Cao M, Lin J L, et al. Selection of dispersant and dispersion mechanism of PVP on copper powders[J]. Colloid and Polymer Science, 2024, 302(3): 355-362. |
| [17] | Xue H J, Wang X M, Xu Q, et al. Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: a comparative study by experimental and advanced modeling analysis[J]. Chemical Engineering Journal, 2022, 430: 132801. |
| [18] | Zhao X B, Han X Y, Yao Y P, et al. Stability investigation of propylene glycol-based Ag@SiO2 nanofluids and their performance in spectral splitting photovoltaic/thermal systems[J]. Energy, 2022, 238: 122040. |
| [19] | Oliveira de Souza L, Cordazzo M, Silva de Souza L M, et al. Investigation of dispersion methodologies of microcrystalline and nano-fibrillated cellulose on cement pastes[J]. Cement and Concrete Composites, 2022, 126: 104351. |
| [20] | Doblas D, Kister T, Cano-Bonilla M, et al. Colloidal solubility and agglomeration of apolar nanoparticles in different solvents[J]. Nano Letters, 2019, 19(8): 5246-5252. |
| [21] | Devendiran D K, Amirtham V A. A review on preparation, characterization, properties and applications of nanofluids[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 21-40. |
| [22] | Liu C Z, Rao Z H, Zhao J T, et al. Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement[J]. Nano Energy, 2015, 13: 814-826. |
| [23] | Marrink S J, Risselada H J, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations[J]. The Journal of Physical Chemistry. B, 2007, 111(27): 7812-7824. |
| [24] | Ruiz-Morales Y, Romero-Martínez A. Coarse-grain molecular dynamics simulations to investigate the bulk viscosity and critical micelle concentration of the ionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution[J]. The Journal of Physical Chemistry. B, 2018, 122(14): 3931-3943. |
| [25] | Wei D W, Fang Y, Liu L, et al. On the intermolecular interactions and mechanical properties of polyvinyl alcohol/inositol supramolecular complexes[J]. Sustainable Materials and Technologies, 2024, 41: e00990. |
| [26] | Illa-Tuset S, Malaspina D C, Faraudo J. Coarse-grained molecular dynamics simulation of the interface behaviour and self-assembly of CTAB cationic surfactants[J]. Physical Chemistry Chemical Physics, 2018, 20(41): 26422-26430. |
| [27] | Rossi G, Giannakopoulos I, Monticelli L, et al. A MARTINI coarse-grained model of a thermoset polyester coating[J]. Macromolecules, 2011, 44(15): 6198-6208. |
| [28] | Liu C Z, Bao Y B, Huang K, et al. Experimental study on natural convection heat transfer performance of microencapsulated phase change material slurry in a square cavity[J]. Applied Thermal Engineering, 2025, 259: 124883. |
| [29] | Zhang J J, Zhu D L, Liu Y, et al. Experimental investigation of spray cooling heat transfer with microcapsule phase change suspension[J]. International Journal of Heat and Mass Transfer, 2024, 229: 125720. |
| [30] | Xiang H, He Z Y, Tang H J, et al. Healing behavior of thermo-oxygen aged asphalt based on molecular dynamics simulations[J]. Construction and Building Materials, 2022, 349: 128740. |
| [31] | Sun D L, Zhou J. Molecular simulation of oxygen sorption and diffusion in the poly (lactic acid)[J]. Chinese Journal of Chemical Engineering, 2013, 21(3): 301-309. |
| [32] | Santos A P, Panagiotopoulos A Z. Determination of the critical micelle concentration in simulations of surfactant systems[J]. The Journal of Chemical Physics, 2016, 144(4): 044709. |
| [33] | Gao C Q, Guo M Y, Liu Y K, et al. Surface modification methods and mechanisms in carbon nanotubes dispersion[J]. Carbon, 2023, 212: 118133. |
| [34] | Song S H, Koelsch P, Weidner T, et al. Sodium dodecyl sulfate adsorption onto positively charged surfaces: monolayer formation with opposing headgroup orientations[J]. Langmuir, 2013, 29(41): 12710-12719. |
| [35] | Wang W T, Zhang B G, Shi Y H, et al. Improvement in dispersion stability of alumina suspensions and corresponding chemical mechanical polishing performance[J]. Applied Surface Science, 2022, 597: 153703. |
| [36] | Chang X J, Henderson W M, Bouchard D C. Multiwalled carbon nanotube dispersion methods affect their aggregation, deposition, and biomarker response[J]. Environmental Science & Technology, 2015, 49(11): 6645-6653. |
| [1] | 兰斌, 路帅, 徐骥, 翟明, 王军武. 流化床直接还原磁铁矿的CFD-DEM-IBM模拟[J]. 化工学报, 2024, 75(12): 4477-4489. |
| [2] | 徐娜, 李子璇, 刘子璐, 吕耀东, 张释文. 溶液环境对液相纳米颗粒体系分散稳定性的影响[J]. 化工学报, 2024, 75(10): 3815-3824. |
| [3] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
| [4] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
| [5] | 刘万强,杨帆,袁华,张远达,易平贵,周虎. 醇类有机物热传导的分子动力学模拟及微观机理研究[J]. 化工学报, 2020, 71(11): 5159-5168. |
| [6] | 郑禾, 杨盛江, 郑永超, 崔燕, 郭旋, 钟近艺, 周健. 尿素和二甲基亚砜诱导DhaA变性的分子动力学模拟[J]. 化工学报, 2019, 70(11): 4337-4345. |
| [7] | 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354. |
| [8] | 王丽颖, 姜震东, 徐勇, 陈浩浩, 项盛, 郭鑫宇, 吴学民. 萘磺酸盐分散剂在不同晶型吡唑醚菌酯颗粒表面吸附性能[J]. 化工学报, 2018, 69(6): 2540-2550. |
| [9] | 张晋玮, 成洪业, 陈立芳, 漆志文. [BMIM]HSO4离子液体腐蚀性的实验与分子模拟[J]. 化工学报, 2018, 69(2): 808-814. |
| [10] | 徐上, 赵伶玲, 蔡庄立, 陈超. 二维氮化铝材料传热性能的模拟研究[J]. 化工学报, 2017, 68(9): 3321-3327. |
| [11] | 南怡伶, 孔宪, 李继鹏, 卢滇楠. 纳米狭缝中水流动非平衡分子动力学模拟[J]. 化工学报, 2017, 68(5): 1786-1793. |
| [12] | 冯志明, 李微微, 李雪, 赵阳, 谢晓峰, 柴春鹏, 罗运军. 不同羧酸根含量对双官能团聚降冰片烯质子交换膜性能影响的分子动力学模拟[J]. 化工学报, 2016, 67(S1): 253-259. |
| [13] | 宋成建, 曲建林, 杨志远, 汪广恒, 杨伏生, 周安宁. 分散剂与神府煤成浆性的匹配规律[J]. 化工学报, 2016, 67(9): 3965-3971. |
| [14] | 单晨旭, 曹绪龙, 祝仰文, 刘坤, 曲广淼, 吕鹏飞, 薛春龙, 丁伟. 辛基酚聚氧乙烯醚磺酸盐界面行为的分子动力学模拟[J]. 化工学报, 2016, 67(4): 1416-1423. |
| [15] | 钱建华, 潘晓娜, 张强, 刘琳. 2,5-二芳基-1,3,4-噻二唑衍生物的合成及缓蚀性能[J]. 化工学报, 2015, 66(7): 2737-2748. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号