化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4412-4424.DOI: 10.11949/0438-1157.20250599
收稿日期:2025-06-04
修回日期:2025-07-15
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
葛蔚
作者简介:张帅(1994—),男,博士,助理研究员,zhangshuai17@ipe.ac.cn
基金资助:
Shuai ZHANG1(
), Jiayu XU1,2, Leina HUA1, Wei GE1,2(
)
Received:2025-06-04
Revised:2025-07-15
Online:2025-09-25
Published:2025-10-23
Contact:
Wei GE
摘要:
工业规模气固系统的模拟研究始终面临着计算量巨大的问题,粗粒化方法将真实颗粒群打包为粗颗粒或颗粒包,提高了数值模拟方法可以处理的粒子规模。作为典型的两类气固系统粗粒化模拟方法,粗粒化离散颗粒法(coarse-grained discrete particle model,CG-DPM)和多相质点网格法(multiphase particle-in-cell,MP-PIC)具有各自的优势,CG-DPM模拟精度高但计算量较大,MP-PIC模拟速度快,但因颗粒间碰撞处理的简化在稠密系统中精度不足。本工作基于空间计算域分解策略将CG-DPM与MP-PIC耦合,在密相区域使用CG-DPM保证精度,在稀相区域使用MP-PIC加速计算,并在鼓泡床模拟中验证了耦合方法的计算精度及速度,为气固颗粒系统的加速模拟方法提供了新思路。
中图分类号:
张帅, 徐嘉宇, 华蕾娜, 葛蔚. 气固系统的CG-DPM与MP-PIC耦合模拟方法[J]. 化工学报, 2025, 76(9): 4412-4424.
Shuai ZHANG, Jiayu XU, Leina HUA, Wei GE. Coupled simulation method of CG-DPM and MP-PIC for gas-solid system[J]. CIESC Journal, 2025, 76(9): 4412-4424.
| 参数 | 数值 |
|---|---|
| 计算域尺寸/m3 | 0.025×0.28×1.0 |
| CFD网格数 | 4×45×160 |
| 气相密度 | 1.225 |
| 气相黏度 | 1.8×10-5 |
| 气速 | 0.03, 0.10, 0.38, 0.46, 0.51 |
| CFD时间步长 | 5×10-4 |
| 真实颗粒粒径 | 2.75×10-4 |
| 粗化率(粗粒化倍数)a | 10 |
| 粗颗粒内部空隙率 | 0.4 |
| 颗粒密度 | 2500 |
| 杨氏模量Y/(N/m2) | 5×107 |
| 恢复系数er | 0.9 |
| 滑动摩擦系数 | 0.1 |
| DEM/PIC时间步长 | 5×10-5 |
| 模拟总时长/s | 30 |
| 统计时间/s | 5~30 |
表1 模拟参数设置
Table 1 Simulation parameters
| 参数 | 数值 |
|---|---|
| 计算域尺寸/m3 | 0.025×0.28×1.0 |
| CFD网格数 | 4×45×160 |
| 气相密度 | 1.225 |
| 气相黏度 | 1.8×10-5 |
| 气速 | 0.03, 0.10, 0.38, 0.46, 0.51 |
| CFD时间步长 | 5×10-4 |
| 真实颗粒粒径 | 2.75×10-4 |
| 粗化率(粗粒化倍数)a | 10 |
| 粗颗粒内部空隙率 | 0.4 |
| 颗粒密度 | 2500 |
| 杨氏模量Y/(N/m2) | 5×107 |
| 恢复系数er | 0.9 |
| 滑动摩擦系数 | 0.1 |
| DEM/PIC时间步长 | 5×10-5 |
| 模拟总时长/s | 30 |
| 统计时间/s | 5~30 |
| 数据来源 | 鼓泡频率/Hz |
|---|---|
| 实验 | 1.8 |
| TFM | 2.2 |
| CG-DPM | 1.6 |
| Coupled | 1.8 |
表2 实验与模拟中床层高度0.2 m处鼓泡频率的对比
Table 2 Comparison of bubbling frequency at bed height of 0.2 m between experiment and simulation
| 数据来源 | 鼓泡频率/Hz |
|---|---|
| 实验 | 1.8 |
| TFM | 2.2 |
| CG-DPM | 1.6 |
| Coupled | 1.8 |
| [1] | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008. |
| Guo M S, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2008. | |
| [2] | 金涌, 祝京旭, 汪展文, 等. 流态化工程原理[M]. 北京: 清华大学出版社, 2001. |
| Jin Y, Zhu J X, Wang Z W, et al. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001. | |
| [3] | Anderson T B, Jackson R. Fluid mechanical description of fluidized beds. Equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. |
| [4] | Gidaspow D. Multiphase Flow and Fluidization: Continue and Kinetic Theory Description[M]. San Diego: Academic Press, 1994. |
| [5] | Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3): 239-250. |
| [6] | Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87. |
| [7] | Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds: kinetic theory approach[C]//Fluidization VII: Proceedings of the Seventh Engineering Foundation Conference on Fluidization. Brisbane, 1992. |
| [8] | Hu H H, Joseph D D, Crochet M J. Direct simulation of fluid particle motions[J]. Theoretical and Computational Fluid Dynamics, 1992, 3(5): 285-306. |
| [9] | Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation (Part 1): Theoretical foundation[J]. Journal of Fluid Mechanics, 1994, 271: 285-309. |
| [10] | Liu X C, Xu J, Ge W, et al. Long-time simulation of catalytic MTO reaction in a fluidized bed reactor with a coarse-grained discrete particle method—EMMS-DPM[J]. Chemical Engineering Journal, 2020, 389: 124135. |
| [11] | Ye Y H, Zhang S, Xu J, et al. 3D coarse-grained DPM simulation of the MIP reaction-regeneration loop[J]. Particuology, 2024, 89: 57-66. |
| [12] | Zhou Z Y, Kuang S B, Chu K W, et al. Discrete particle simulation of particle-fluid flow: model formulations and their applicability[J]. Journal of Fluid Mechanics, 2010, 661: 482-510. |
| [13] | Ge W, Wang L M, Xu J, et al. Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application[J]. Reviews in Chemical Engineering, 33(6): 551-623. |
| [14] | Zhang S, Ge W. Accelerating discrete particle simulation of particle-fluid systems[J]. Current Opinion in Chemical Engineering, 2024, 43: 100989. |
| [15] | Sakai M, Koshizuka S. Large-scale discrete element modeling in pneumatic conveying[J]. Chemical Engineering Science, 2009, 64(3): 533-539. |
| [16] | Andrews M J, O'Rourke P J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J]. International Journal of Multiphase Flow, 1996, 22(2): 379-402. |
| [17] | Di Renzo A, Napolitano E S, Di Maio F P. Coarse-grain DEM modelling in fluidized bed simulation: a review[J]. Processes, 2021, 9(2): 279. |
| [18] | Chen X Z, Wang J W. Mesoscale-structure-based dynamic multiscale method for gas-solid flow[J]. Chemical Engineering Science, 2018, 192: 864-881. |
| [19] | Zhang S, Ge W, Liu C J. Spatial-temporal multiscale discrete-continuum simulation of granular flow[J]. Physics of Fluids, 2023, 35(5): 053319. |
| [20] | Zhu L T, Chen X Z, Ouyang B, et al. Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors[J]. Industrial & Engineering Chemistry Research, 2022, 61(28): 9901-9949. |
| [21] | Bazai H, Kargar E, Mehrabi M. Using an encoder-decoder convolutional neural network to predict the solid holdup patterns in a pseudo-2D fluidized bed[J]. Chemical Engineering Science, 2021, 246: 116886. |
| [22] | Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. |
| [23] | Kazari M, Roko K, Kawaguchi T, et al. A study on conditions for similarity of particle motion in numerical simulation of dense gas-solid two phase flow[C]//Proceedings of the 2nd International Conference on Multiphase Flow'95. Kyoto, 1995. |
| [24] | Sulsky D, Zhou S J, Schreyer H L. Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1995, 87(1/2): 236-252. |
| [25] | Snider D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of Computational Physics, 2001, 170(2): 523-549. |
| [26] | Snider D M. Three fundamental granular flow experiments and CPFD predictions[J]. Powder Technology, 2007, 176(1): 36-46. |
| [27] | Lu L Q, Gopalan B, Benyahia S. Assessment of different discrete particle methods ability to predict gas-particle flow in a small-scale fluidized bed[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7865-7876. |
| [28] | Liang Y S, Zhang Y M, Li T W, et al. A critical validation study on CPFD model in simulating gas-solid bubbling fluidized beds[J]. Powder Technology, 2014, 263: 121-134. |
| [29] | Kraft S, Kirnbauer F, Hofbauer H. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input[J]. Applied Energy, 2017, 190: 408-420. |
| [30] | Li C L, Eri Q T. Comparison between two Eulerian-Lagrangian methods: CFD-DEM and MPPIC on the biomass gasification in a fluidized bed[J]. Biomass Conversion and Biorefinery, 2023, 13(5): 3819-3836. |
| [31] | 陈飞国, 葛蔚. 耦合粗粒化离散颗粒法和多相物质点法的气固两相流模拟[J]. 过程工程学报, 2019, 19(4): 651-660. |
| Chen F G, Ge W. Coupling of coarse-grained discrete particle method and particle-in-cell method for simulation of gas-solid flow[J]. The Chinese Journal of Process Engineering, 2019, 19(4): 651-660. | |
| [32] | Lu L Q, Xu J, Ge W, et al. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J]. Chemical Engineering Science, 2014, 120: 67-87. |
| [33] | Harris S E, Crighton D G. Solitons, solitary waves, and voidage disturbances in gas-fluidized beds[J]. Journal of Fluid Mechanics, 1994, 266: 243-276. |
| [34] | Taghipour F, Ellis N, Wong C. Experimental and computational study of gas-solid fluidized bed hydrodynamics[J]. Chemical Engineering Science, 2005, 60(24): 6857-6867. |
| [35] | Liu X X, Zhu C Q, Geng S J, et al. Two-fluid modeling of Geldart A particles in gas-solid micro-fluidized beds[J]. Particuology, 2015, 21: 118-127. |
| [36] | Zhu A Q, Chang Q, Xu J, et al. A dual-grid approach to speed up large-scale CFD-DEM simulations[J]. Chemical Engineering Journal, 2024, 492: 152218. |
| [37] | Zhang Y, Xu J, Chang Q, et al. Bi-layer coarse-grained DPM of gas-solid systems with mesoscale heterogeneity resolved[J]. Chemical Engineering Science, 2022, 263: 118058. |
| [38] | Zhao X, Jiang Y, Li F, et al. A scaled MP-PIC method for bubbling fluidized beds[J]. Powder Technology, 2022, 404: 117501. |
| [1] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [2] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [3] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| [4] | 陈昇, 李子争, 苗超, 白学刚, 李飞, 刘家璇, 李天天, 杨爽, 吕蓉蓉, 王江云. 大尺度密集场景高危氯气非均匀湍流扩散特性三维CFD模拟[J]. 化工学报, 2025, 76(9): 4630-4643. |
| [5] | 解勤勤, 翁俊旗, 林振利, 叶光华, 周兴贵. 固定床反应器中甲醇制芳烃工业催化剂结构影响的研究[J]. 化工学报, 2025, 76(9): 4487-4498. |
| [6] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| [7] | 苏国庆, 田学梅, 李彦, 张建文, 张志军. 气力输送系统弯管三通的冲蚀分析及改进[J]. 化工学报, 2025, 76(8): 3894-3904. |
| [8] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [9] | 王泽, 胡琼, 陈雅静, 王衍, 耿佳旭, 沈斐然. 液体自冲击密封泄漏特性、密封机理与优化设计[J]. 化工学报, 2025, 76(8): 4194-4204. |
| [10] | 郭铮铮, 赵一丹, 王辅强, 裴璐, 靳彦岭, 任芳, 任鹏刚. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J]. 化工学报, 2025, 76(7): 3719-3732. |
| [11] | 夏天炜, 王谙词, 句子涵, 孙晓霞, 胡定华. 基于三周期极小曲面结构的高密度储热器蓄放热特性研究[J]. 化工学报, 2025, 76(7): 3605-3614. |
| [12] | 陈曦, 王淑彦, 邵宝力, 丁诺, 谢磊. 基于颗粒动态恢复系数二阶矩模型的液固流化床数值模拟研究[J]. 化工学报, 2025, 76(7): 3246-3258. |
| [13] | 王富玉, 周晅毅. 结合非定常伴随方程和遗传算法的化工区反演[J]. 化工学报, 2025, 76(6): 3104-3114. |
| [14] | 张亿韵, 陈恒志, 李洋, 慕长安, 王泉海. 湍流对双组分颗粒流化床气体径向扩散的影响[J]. 化工学报, 2025, 76(6): 2559-2568. |
| [15] | 谷德银, 杨豪, 李昌树, 刘作华. 分形穿流桨搅拌槽内假塑性流体的混合行为[J]. 化工学报, 2025, 76(6): 2569-2579. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号