化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5776-5787.DOI: 10.11949/0438-1157.20250473
• 专栏:能源利用过程中的多相流与传热 • 上一篇
收稿日期:2025-04-30
修回日期:2025-07-18
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
李健,许传龙
作者简介:陈满福(1998—),男,博士研究生,230238099@seu.edu.cn
基金资助:
Manfu CHEN(
), Xi WANG, Jian LI(
), Biao ZHANG, Chuanlong XU(
)
Received:2025-04-30
Revised:2025-07-18
Online:2025-11-25
Published:2025-12-19
Contact:
Jian LI, Chuanlong XU
摘要:
提出了一种基于磷光粒子示踪与全场强度比标定的高温气流流场温度场同步测量方法,采用BaMgAl₁₀O₁₇∶Eu²⁺(BAM∶Eu)磷光粒子同时作为流体的示踪与示温介质,通过对磷光时序图像进行互相关分析提取速度场信息,并基于双波段磷光图像的强度比法重建温度场。结合磷光粒子的激发光谱特性,构建了双波段磷光图像采集系统,并针对成像系统空间响应不均匀性,提出了全场强度比温度标定方法,建立了覆盖27~500℃的精细化温度标定数据库。为评估该方法的可行性,搭建了高温空气圆管自由射流实验平台,开展了不同工况下的同步测量实验。实验结果表明,在100~500℃和15~40 m/s范围内,温度测量的相对误差和相对标准偏差分别小于0.98%和1.17%,速度测量分别小于1.89%和2.84%。
中图分类号:
陈满福, 王曦, 李健, 张彪, 许传龙. 基于磷光粒子示踪与全场强度比标定的高温气流流场温度场同步测量方法[J]. 化工学报, 2025, 76(11): 5776-5787.
Manfu CHEN, Xi WANG, Jian LI, Biao ZHANG, Chuanlong XU. Simultaneous measurement method for gas flow velocity and temperature fields through phosphorescent particles tracing and full-field intensity ratio calibration[J]. CIESC Journal, 2025, 76(11): 5776-5787.
图1 基于磷光粒子示踪的流场温度场同步测量原理
Fig.1 Simultaneous measurement principle for gas flow velocity and temperature fields through phosphorescent particles tracing
| 密度ρp/(g/cm3) | 热导率kp/(W/(m·K)) | 比热容Cp,p/(J/(kg·K)) | 粒径dp/μm | 熔点/℃ | 磷光寿命τ(27℃)/μs | 吸收光谱/nm |
|---|---|---|---|---|---|---|
| 3.7 | 14 | 622.1 | 2 | 1920 | 1.67 | 250~420 |
表1 BAM∶Eu磷光粒子物性参数
Table 1 Physical property parameters of BAM∶Eu phosphorescent particles
| 密度ρp/(g/cm3) | 热导率kp/(W/(m·K)) | 比热容Cp,p/(J/(kg·K)) | 粒径dp/μm | 熔点/℃ | 磷光寿命τ(27℃)/μs | 吸收光谱/nm |
|---|---|---|---|---|---|---|
| 3.7 | 14 | 622.1 | 2 | 1920 | 1.67 | 250~420 |
| 密度ρg/(kg/m3) | 动力黏度μg/(kg/(m·s)) | 热导率kg/(W/(m·K)) |
|---|---|---|
| 1.205 | 18.1×10-6 | 2.59×10-2 |
表2 空气物性参数
Table 2 Physical property parameters of air
| 密度ρg/(kg/m3) | 动力黏度μg/(kg/(m·s)) | 热导率kg/(W/(m·K)) |
|---|---|---|
| 1.205 | 18.1×10-6 | 2.59×10-2 |
图9 高温空气圆管自由射流二维流场温度场同步测量实验系统
Fig.9 Experimental setup for synchronous measurement of 2D flow and temperature field measurement in high-temperature air free jet
| 工况编号 | 温度/℃ | 速度/(m/s) | 激光脉冲时间间隔/μs | 激光脉冲持续时间/ns | 双曝光首帧曝光时间/μs |
|---|---|---|---|---|---|
| Case 1 | 100 | 16.29 | 17 | 7 | 6 |
| Case 2 | 300 | 25.02 | 11 | 7 | 6 |
| Case 3 | 500 | 33.75 | 8 | 7 | 6 |
表3 实验工况参数
Table 3 Experimental condition parameters
| 工况编号 | 温度/℃ | 速度/(m/s) | 激光脉冲时间间隔/μs | 激光脉冲持续时间/ns | 双曝光首帧曝光时间/μs |
|---|---|---|---|---|---|
| Case 1 | 100 | 16.29 | 17 | 7 | 6 |
| Case 2 | 300 | 25.02 | 11 | 7 | 6 |
| Case 3 | 500 | 33.75 | 8 | 7 | 6 |
| [1] | Sparre M, Pfrommer C, Vogelsberger M. The physics of multiphase gas flows: fragmentation of a radiatively cooling gas cloud in a hot wind[J]. Monthly Notices of the Royal Astronomical Society, 2019, 482(4): 5401-5421. |
| [2] | Maestro D, Cuenot B, Selle L. Large eddy simulation of combustion and heat transfer in a single element GCH4/GO x rocket combustor[J]. Flow, Turbulence and Combustion, 2019, 103(3): 699-730. |
| [3] | Falkenstein T, Kang S, Cai L M, et al. DNS study of the global heat release rate during early flame kernel development under engine conditions[J]. Combustion and Flame, 2020, 213: 455-466. |
| [4] | Yang L, Weng W B, Zhu Y Q, et al. Investigation of hydrogen content and dilution effect on syngas/air premixed turbulent flame using OH planar laser-induced fluorescence[J]. Processes, 2021, 9(11): 1894. |
| [5] | Kasapis G, Yang S Z, Falgout Z, et al. A study of Novec 649TM fluid jets injected into sub-, trans-, and supercritical thermodynamic conditions using planar laser induced fluorescence and elastic light scattering diagnostics[J]. Physics of Fluids, 2022, 34(10): 102106. |
| [6] | Pint B A. High temperature and pressure steam-H2 interaction with candidate advanced LWR fuel claddings[R]. Oak Ridge (TN): Oak Ridge National Laboratory (ORNL), Shared Research Equipment Collaborative Research Center, 2012. |
| [7] | Weng W B, Borggren J, Li B, et al. A novel multi-jet burner for hot flue gases of wide range of temperatures and compositions for optical diagnostics of solid fuels gasification/combustion[J]. Review of Scientific Instruments, 2017, 88(4): 045104. |
| [8] | Sankhyan S, Zabinski K, O'Brien R E, et al. Aerosol emissions and their volatility from heating different cooking oils at multiple temperatures[J]. Environmental Science: Atmospheres, 2022, 2(6): 1364-1375. |
| [9] | Qasim M K, Basher H O, Salman M D. Enhancement of heat transfer in double pipe heat exchanger using Al2O3-Fe2O3/water hybrid nanofluid[J]. The Iraqi Journal for Mechanical and Materials Engineering, 2021, 21(2): 148-163. |
| [10] | Lu L W, Tian R, Han X F. Optimization of nanofluid flow and temperature uniformity in the spectral beam splitting module of PV/T system[J]. Energies, 2023, 16(12): 4666. |
| [11] | 王利平, 张靖周, 姚玉. 热障涂层对涡轮叶片冷却效果影响的数值研究[J]. 化工学报, 2012, 63(S1): 130-137. |
| Wang L P, Zhang J Z, Yao Y. Numerical study on the effect of thermal barrier coating on cooling effect of turbine blades[J]. CIESC Journal, 2012, 63(S1): 130-137. | |
| [12] | 车翠翠, 田茂诚, 冷学礼, 等. 不同翼片扰流特性的PIV对比实验[J]. 化工学报, 2014, 65(S1): 11-16. |
| Che C C, Tian M C, Leng X L, et al. PIV experiment on turbulence characteristic with different winglets inserted[J]. CIESC Journal, 2014, 65(S1): 11-16. | |
| [13] | Ferrari S, Rossi R, Di Bernardino A. A review of laboratory and numerical techniques to simulate turbulent flows[J]. Energies, 2022, 15(20): 7580. |
| [14] | Denne J C. Aerodynamic characterization of a closed-loop, semi-open jet wind tunnel using experimental and computational methods[D]. Ottawa: Carleton University, 2023. |
| [15] | Seong J H, Song M S, Nunez D, et al. Velocity refinement of PIV using global optical flow[J]. Experiments in Fluids, 2019, 60(11): 174. |
| [16] | Holešová N, Lenhard R, Kaduchová K, et al. Application of particle image velocimetry and computational fluid dynamics methods for analysis of natural convection over a horizontal heating source[J]. Energies, 2023, 16(10): 4066. |
| [17] | Rohacs D, Yasar O, Kale U, et al. Past and current components-based detailing of particle image velocimetry: a comprehensive review[J]. Heliyon, 2023, 9(3): e14404. |
| [18] | 尚灵祎, 吴峰, 马晓迅. 带纵向涡发生器喷动床内颗粒流动特性PIV实验[J]. 化工学报, 2018, 69(5): 1923-1930. |
| Shang L Y, Wu F, Ma X X. Experimental investigation on particle flow characteristics in spouted bed with longitudinal vortex generator[J]. CIESC Journal, 2018, 69(5): 1923-1930. | |
| [19] | Malík M, Primas J, Schovanec P, et al. Possible limitations of the particle image velocimetry method in the presence of strong electric fields[J]. Processes, 2021, 9(10): 1790. |
| [20] | 鲍苏洋, 周勇军, 王璐璐, 等. 涡轮桨搅拌槽内流场特性的V3V实验[J]. 化工学报, 2016, 67(11): 4580-4586. |
| Bao S Y, Zhou Y J, Wang L L, et al. V3V study on flow field characteristics in a stirred vessel with Rushton turbine impeller[J]. CIESC Journal, 2016, 67(11): 4580-4586. | |
| [21] | Volkov R S, Voytkov I S, Strizhak P A. Temperature fields of the droplets and gases mixture[J]. Applied Sciences, 2020, 10(7): 2212. |
| [22] | 李杨, 殷光明. 航空发动机涡轮叶片晶体测温技术研究[J]. 航空发动机, 2017, 43(3): 83-87. |
| Li Y, Yin G M. Research on crystal temperature measurement technology for aeroengine turbine blade[J]. Aeroengine, 2017, 43(3): 83-87. | |
| [23] | Liger V, Mironenko V, Kuritsyn Y, et al. Temperature measurements by wavelength modulation diode laser absorption spectroscopy with logarithmic conversion and 1f signal detection[J]. Sensors, 2023, 23(2): 622. |
| [24] | Liu S Y, Huang Y, He Y, et al. Review of development and comparison of surface thermometry methods in combustion environments: principles, current state of the art, and applications[J]. Processes, 2022, 10(12): 2528. |
| [25] | Fang Y, Liu W, Teat S J, et al. A systematic approach to achieving high performance hybrid lighting phosphors with excellent thermal- and photostability[J]. Advanced Functional Materials, 2017, 27(3): 1603444. |
| [26] | Aldén M, Omrane A, Richter M, et al. Thermographic phosphors for thermometry: a survey of combustion applications[J]. Progress in Energy and Combustion Science, 2011, 37(4): 422-461. |
| [27] | Omrane A, Petersson P, Aldén M, et al. Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors[J]. Applied Physics B, 2008, 92(1): 99-102. |
| [28] | Yin Z Y, Fond B, Eckel G, et al. Investigation of BAM∶Eu2+ particles as a tracer for temperature imaging in flames[J]. Combustion and Flame, 2017, 184: 249-251. |
| [29] | Someya S, Okura Y, Munakata T, et al. Instantaneous 2D imaging of temperature in an engine cylinder with flame combustion[J]. International Journal of Heat and Mass Transfer, 2013, 62: 382-390. |
| [30] | Lee H, Böhm B, Sadiki A, et al. Turbulent heat flux measurement in a non-reacting round jet, using BAM∶Eu2+ phosphor thermography and particle image velocimetry[J]. Applied Physics B, 2016, 122(7): 209. |
| [31] | Zhou L H, Du P, Li L. Facile modulation the sensitivity of Eu2+/Eu3+-coactivated Li2CaSiO4 phosphors through adjusting spatial mode and doping concentration[J]. Scientific Reports, 2020, 10(1): 20180. |
| [32] | Cai T, Han J, Kim M, et al. Adaptive window technique for lifetime-based temperature and velocity simultaneous measurement using thermographic particle tracking velocimetry with a single camera[J]. Experiments in Fluids, 2022, 63(10): 157. |
| [33] | Sutton G, Korniliou S, Andreu A, et al. Imaging luminescence thermometry to 750℃ for the heat treatment of common engineering alloys and comparison with thermal imaging[J]. International Journal of Thermophysics, 2022, 43(3): 36. |
| [34] | Cheng C, Fu L. Linear-model-based study of the coupling between velocity and temperature fields in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2023, 964: A15. |
| [35] | Belhocine A, Stojanovic N, Abdullah O I. Numerical predictions of laminar flow and free convection heat transfer from an isothermal vertical flat plate[J]. Archive of Mechanical Engineering, 2022: 749-773. |
| [36] | Bohlin A, Kliewer C J. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot[J]. Journal of Chemical Physics, 2013, 138(22): 221101. |
| [37] | Kearney S P, Grasser T W, Bourdon C J. A combined PLIF/PIV system for simultaneous gas-phase temperature/velocity imaging[C]//Proceeding of Fluids Engineering. New Orleans, Louisiana, USA: ASMEDC, 2002: 17-22. |
| [38] | Salvi C, Gülhan A. Velocity measurements in particle-laden high-enthalpy flow using non-intrusive techniques[J]. Experiments in Fluids, 2024, 65(3): 39. |
| [39] | Fond B, Abram C, Beyrau F. Characterisation of the luminescence properties of BAM∶Eu2+ particles as a tracer for thermographic particle image velocimetry[J]. Applied Physics B, 2015, 121(4): 495-509. |
| [40] | Someya S, Yoshida S, Li Y R, et al. Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles[J]. Measurement Science and Technology, 2009, 20(2): 025403. |
| [41] | Tian R, Xu Y, Zhu Y C, et al. A new method for simultaneous measurement of flow velocity and temperature using phosphorescent particle tracking velocimetry[J]. Acta Mechanica Sinica, 2025, 42(3): 324691. |
| [42] | Cai T, Luan D, Fu R Y, et al. Simultaneous temperature and velocity measurements based on novel fluid density-matched phosphorescent microspheres[J]. Experiments in Fluids, 2025, 66(2): 36. |
| [43] | Fan L, Gao Y, Hayakawa A, et al. Simultaneous, two-camera, 2D gas-phase temperature and velocity measurements by thermographic particle image velocimetry with ZnO tracers[J]. Experiments in Fluids, 2017, 58(4): 34. |
| [44] | Elhimer M, Praud O, Marchal M, et al. Simultaneous PIV/PTV velocimetry technique in a turbulent particle-laden flow[J]. Journal of Visualization, 2017, 20(2): 289-304. |
| [45] | Yan S R. Negative thermal quenching of photoluminescence: an evaluation from the macroscopic viewpoint[J]. Materials, 2024, 17(3): 586. |
| [46] | 陈满福, 张彪, 李健, 等. 分光型激光诱导磷光系统标定及气体温度场测量[J]. 工程热物理学报, 2024, 45(4): 1062-1068. |
| Chen M F, Zhang B, Li J, et al. Calibration of laser induced phosphorescence system for measurement of gas temperature field[J]. Journal of Engineering Thermophysics, 2024, 45(4): 1062-1068. | |
| [47] | Fond B, Abram C, Heyes A L, et al. Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles[J]. Optics Express, 2012, 20(20): 22118-22133. |
| [48] | Keane R D, Adrian R J. Optimization of particle image velocimeters(Ⅰ): Double pulsed systems[J]. Measurement Science and Technology, 1990, 1(11): 1202-1215. |
| [1] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [2] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [3] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| [4] | 周光正, 钟子翰, 黄彦群, 王学重. 基于原位成像与图像分析技术的结晶过程智能监测[J]. 化工学报, 2025, 76(9): 4351-4368. |
| [5] | 张海丰, 闫静怡, 岳玉学, 张子龙, 王柏林, 李小年. WO3纳米颗粒定性表面羟基化重构及其改性变压器油机制研究[J]. 化工学报, 2025, 76(7): 3696-3709. |
| [6] | 杨盛华, 孙阳杰, 薛晓君, 米杰, 王建成, 冯宇. 缺陷型金属氧化物脱除气体污染物研究进展[J]. 化工学报, 2025, 76(6): 2469-2482. |
| [7] | 张亿韵, 陈恒志, 李洋, 慕长安, 王泉海. 湍流对双组分颗粒流化床气体径向扩散的影响[J]. 化工学报, 2025, 76(6): 2559-2568. |
| [8] | 陶春珲, 李印辉, 傅钰, 段然, 赵泽一, 唐羽丰, 张罡, 马和平. 不同吸附剂对低浓度Kr气的选择性吸附与纯化[J]. 化工学报, 2025, 76(5): 2358-2366. |
| [9] | 赵浩帆, 任豪杰, 刘宗凯, 董冠英, 张亚涛. MOFs玻璃膜在气体分离领域的研究进展[J]. 化工学报, 2025, 76(5): 2042-2054. |
| [10] | 茅雨洁, 路晓飞, 锁显, 杨立峰, 崔希利, 邢华斌. 工业气体中微量氧深度脱除催化剂研究进展[J]. 化工学报, 2025, 76(5): 1997-2010. |
| [11] | 顾栋, 皮行健, 张叠, 张瑛. 不同粒径CAU-1/PI混合基质膜的构建与H2/CO2分离性能研究[J]. 化工学报, 2025, 76(5): 2410-2418. |
| [12] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| [13] | 赵鹏飞, 戚若玫, 郭新锋, 方虎, 徐庐飞, 李潇, 林今. 千标方级碱性水电解制氢系统氧中氢杂质分析[J]. 化工学报, 2025, 76(4): 1765-1778. |
| [14] | 张玮杰, 何甲文, 张一鸣, 李德立, 胡光亚, 蔡骁, 王金华, 黄佐华. 燃料分层对多级旋流甲烷燃烧流场和火焰结构影响研究[J]. 化工学报, 2025, 76(4): 1754-1764. |
| [15] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号