• •
收稿日期:2025-07-28
修回日期:2025-11-12
出版日期:2025-11-13
通讯作者:
殷金英
作者简介:殷金英(1979—),女,博士,教授,jinying_yin@126.com
基金资助:
Jinying YIN(
), Xinyao QIAO, Shuyu SONG
Received:2025-07-28
Revised:2025-11-12
Online:2025-11-13
Contact:
Jinying YIN
摘要:
高温下SiO2气凝胶热导率大幅增加,添加遮光剂可以显著提升其隔热性能。采用有限元分析法(Finite Element Method,FEM),建立了SiC遮光剂掺杂SiO2气凝胶复合材料周期性体积单元模型,对其施加周期性边界条件,分析了SiC遮光剂粒径和掺杂量对SiO2气凝胶材料气固耦合热导率的影响,结合Mie理论辐射热导率值,分析了掺杂SiC遮光剂有效热导率的变化规律。结果表明,气固耦合热导率随SiC体积分数增加而增加,辐射热导率随体积分数增加而减小,确定了不同温度和体积分数下辐射热导率最低值对应的最优粒径,得出了不同温度下使复合材料有效热导率降至最低的遮光剂参数。
中图分类号:
殷金英, 乔鑫垚, 宋书宇. SiC遮光剂对SiO2气凝胶复合材料热导率的影响[J]. 化工学报, DOI: 10.11949/0438-1157.20250831.
Jinying YIN, Xinyao QIAO, Shuyu SONG. Effect of SiC opacifier on thermal conductivity of SiO2 aerogel composite material[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250831.
| 温度(℃) | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 1000 |
|---|---|---|---|---|---|---|---|---|
| SiO2热导率W·(m·K)-1 | 0.039 | 0.052 | 0.067 | 0.078 | 0.091 | 0.174 | 0.290 | - |
| SiC热导率W·(m·K)-1 | 4.900 | 3.500 | 2.200 | 1.300 | 0.760 | - | - | 0.500 |
表1 SiO2与SiC材料热导率[20,24]
Table 1 Thermal conductivity of SiO2 aerogel and SiC opacifier at different temperatures
| 温度(℃) | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 1000 |
|---|---|---|---|---|---|---|---|---|
| SiO2热导率W·(m·K)-1 | 0.039 | 0.052 | 0.067 | 0.078 | 0.091 | 0.174 | 0.290 | - |
| SiC热导率W·(m·K)-1 | 4.900 | 3.500 | 2.200 | 1.300 | 0.760 | - | - | 0.500 |
| RVE模型编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| λg-s / W·(m·K)-1 | 0.0526 | 0.0530 | 0.0527 | 0.0526 | 0.0530 | 0.0530 | 0.0528 | 0.0527 | 0.0530 | 0.0530 |
表2 RVE模型随机结构对气固耦合热导率的影响
Table2 Influence of random distribution of SiC particles in RVE model on gas-solid coupled thermal conductivity
| RVE模型编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| λg-s / W·(m·K)-1 | 0.0526 | 0.0530 | 0.0527 | 0.0526 | 0.0530 | 0.0530 | 0.0528 | 0.0527 | 0.0530 | 0.0530 |
| φop | 热导率/W·(m·K)-1 | 100℃ | 200℃ | 300℃ | 400℃ | 500℃ | 600℃ |
|---|---|---|---|---|---|---|---|
| 0.0375 | λg-s,FEM | 0.035 | 0.036 | 0.041 | 0.046 | 0.050 | 0.055 |
| λg-s,exp | 0.033 | 0.034 | 0.039 | 0.044 | 0.048 | 0.052 | |
| λg-s,Maxwell | 0.031 | 0.035 | 0.038 | 0.039 | 0.041 | 0.045 | |
| δ1/% | 6.06 | 5.88 | 5.13 | 4.55 | 4.17 | 5.77 | |
| δ2/% | 6.45 | 2.94 | 2.60 | 11.40 | 14.60 | 13.40 | |
| 0.01 | λg-s,FEM | 0.033 | 0.037 | 0.045 | 0.05 | 0.055 | 0.059 |
| λg-s,exp | 0.032 | 0.036 | 0.043 | 0.048 | 0.053 | 0.056 | |
| λg-s,Maxwell | 0.030 | 0.033 | 0.035 | 0.037 | 0.038 | 0.041 | |
| δ1/% | 3.13 | 2.78 | 4.65 | 4.17 | 3.77 | 5.36 | |
| δ2/% | 6.25 | 8.33 | 18.50 | 22.80 | 28.30 | 26.70 |
表3 FEM计算值和Maxwell公式值与实验值[20]气固耦合热导率比较
Table3 Multi-method comparison and deviation of gas-solid coupled thermal conductivity of composite material
| φop | 热导率/W·(m·K)-1 | 100℃ | 200℃ | 300℃ | 400℃ | 500℃ | 600℃ |
|---|---|---|---|---|---|---|---|
| 0.0375 | λg-s,FEM | 0.035 | 0.036 | 0.041 | 0.046 | 0.050 | 0.055 |
| λg-s,exp | 0.033 | 0.034 | 0.039 | 0.044 | 0.048 | 0.052 | |
| λg-s,Maxwell | 0.031 | 0.035 | 0.038 | 0.039 | 0.041 | 0.045 | |
| δ1/% | 6.06 | 5.88 | 5.13 | 4.55 | 4.17 | 5.77 | |
| δ2/% | 6.45 | 2.94 | 2.60 | 11.40 | 14.60 | 13.40 | |
| 0.01 | λg-s,FEM | 0.033 | 0.037 | 0.045 | 0.05 | 0.055 | 0.059 |
| λg-s,exp | 0.032 | 0.036 | 0.043 | 0.048 | 0.053 | 0.056 | |
| λg-s,Maxwell | 0.030 | 0.033 | 0.035 | 0.037 | 0.038 | 0.041 | |
| δ1/% | 3.13 | 2.78 | 4.65 | 4.17 | 3.77 | 5.36 | |
| δ2/% | 6.25 | 8.33 | 18.50 | 22.80 | 28.30 | 26.70 |
| [1] | Liang Y, Zhao X Y, Zhang M. Ceramic nanofiber aerogels based on conjugated electrospinning for high-temperature thermal insulation[J]. Journal of Physics: Conference Series, 2025, 2954(1): 012096. |
| [2] | Zhang W L, Wang B, Xu Y X, et al. Improvement of thermal stability performance of aerogels by MgAl2O4 nanopowder[J]. Journal of Porous Materials, 2025, 32(5):1751-1762. |
| [3] | Su L, Wang H J, Niu M, et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation[J]. Science Advances, 2020, 6(26): eaay6689. |
| [4] | Pang H Q, Li Z Y. Experimental investigations on the thermal insulation performance of SiC opacifier doped silica aerogel at large temperature difference[J]. International Journal of Thermal Sciences, 2021, 160: 106681. |
| [5] | 王蒙蒙, 隋学叶, 綦开宇, 等. 改性二氧化硅气凝胶材料的研究进展[J]. 中国陶瓷, 2024, 60(12): 1-9. |
| Wang M M, Sui X Y, Qi K Y, et al. Research progress of modified silica aerogel materials[J]. China Ceramics, 2024, 60(12): 1-9. | |
| [6] | 许晴, 王昕悦, 蔡伟杰, 等. 耐高温隔热氧化物气凝胶研究进展[J]. 化学进展, 2024, 36(10): 1520-1540. |
| Xu Q, Wang X Y, Cai W J, et al. High temperature resistance and heat insulation of oxide aerogels[J]. Progress in Chemistry, 2024, 36(10): 1520-1540. | |
| [7] | 侯建业, 张忠伦, 付晓晴, 等. Fe2O3-SiO2复合气凝胶材料的制备及耐温性能[J]. 耐火材料, 2025(2): 133-137. |
| Hou J Y, Zhang Z L, Fu X Q, et al. Preparation and temperature resistance of Fe2O3-SiO2 composite aerogels[J]. Refractories, 2025(2): 133-137. | |
| [8] | 张忠伦, 付晓晴, 王明铭, 等. TiO2-SiO2复合气凝胶材料的性能研究[J]. 中国建材科技, 2023, 32(6): 36-42. |
| Zhang Z L, Fu X Q, Wang M M, et al. Study on the properties of TiO2-SiO2 composite aerogel materials[J]. China Building Materials Science & Technology, 2023, 32(6): 36-42. | |
| [9] | Huang B H, Li J B, Gong L, et al. The influence of reinforced fibers and opacifiers on the effective thermal conductivity of silica aerogels[J]. Gels, 2024, 10(5): 300. |
| [10] | 隋清羽, 王盛群, 张涛, 等. TiO2遮光剂对气凝胶涂料绝热性能的影响[J]. 沈阳理工大学学报, 2021, 40(2): 49-55. |
| Sui Q Y, Wang S Q, Zhang T, et al. Impact of TiO2 on the thermal insulation performance of aerogel thermal insulation coatings[J]. Journal of Shenyang Ligong University, 2021, 40(2): 49-55. | |
| [11] | 任登凤, 宣益民, 韩玉阁. 多尺度特征对纳米多孔材料辐射特性的影响[J]. 化工学报, 2012, 63(S1): 219-224. |
| Ren D F, Xuan Y M, Han Y G. Influence of multi-scale characteristics on radiation characteristics of nano-porous materials[J]. CIESC Journal, 2012, 63(S1): 219-224. | |
| [12] | Lou F F, Dong S J, Ma Y W, et al. Thermal conductivity test and model modification of SiO2 aerogel composites based on heat flow meter method[J]. Applied Thermal Engineering, 2024, 254: 123877. |
| [13] | 黄睿名, 姜勇刚, 柳凤琦, 等. 氧化物气凝胶高温红外改性研究[J]. 化学进展, 2024, 36(2): 234-243. |
| Huang R M, Jiang Y G, Liu F Q, et al. Research advances on high-temperature infrared modification of oxide aerogels[J]. Progress in Chemistry, 2024, 36(2): 234-243. | |
| [14] | Wu Q, Yang L X, Chen Z F, et al. A flexible silica aerogel paper with temperature-switch opacifier for thermal insulation[J]. Journal of Materials Research and Technology, 2023, 24: 4037-4046. |
| [15] | 刘鹤, 焦俊华, 田友, 等. 遮光剂复合氧化硅气凝胶材料的隔热性能优化[J]. 工程热物理学报, 2021, 42(11): 2991-3000. |
| Liu H, Jiao J H, Tian Y, et al. Thermal insulation performance optimization of opacifier doped silica aerogel composites[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2991-3000. | |
| [16] | Zhang S N, Pang H Q, Fan T H, et al. Thermal insulation performance of SiC-doped silica aerogels under large temperature and air pressure differences[J]. Gels, 2022, 8(5): 320. |
| [17] | He S, Zhang X Q, Wu X Y, et al. Heat transfer mechanism of TiO2-doped silica aerogel[J]. Applied Thermal Engineering, 2024, 239: 122182. |
| [18] | Xie T, He Y L, Hu Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 540-552. |
| [19] | 范坤阳, 杨景兴, 许海波, 等. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
| Fan K Y, Yang J X, Xu H B, et al. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel[J]. CIESC Journal, 2023, 74(5): 1974-1981. | |
| [20] | 张虎, 马奕新, 王娴, 等. 添加物对氧化硅凝胶隔热性能影响的实验研究[J]. 工程热物理学报, 2018, 39(5): 1039-1043. |
| Zhang H, Ma Y X, Wang X, et al. Experimental study of the influence of additives on the thermal conductivity of silica aerogel composite[J]. Journal of Engineering Thermophysics, 2018, 39(5): 1039-1043. | |
| [21] | Tian W L, Qi L H, Chao X J, et al. Numerical evaluation on the effective thermal conductivity of the composites with discontinuous inclusions: Periodic boundary condition and its numerical algorithm[J]. International Journal of Heat and Mass Transfer, 2019, 134: 735-751. |
| [22] | Zeng S Q, Hunt A, Greif R. Geometric structure and thermal conductivity of porous medium silica aerogel[J]. Journal of Heat Transfer, 1995, 117(4): 1055-1058. |
| [23] | 张鑫源. 以水玻璃为源制备SiC气凝胶及其吸波隔热性能研究[D]. 太原: 太原理工大学, 2023. |
| Zhang X Y. Preparation of SiC aerogel from water glass as a source and its wave absorbing and thermal insulation properties[D]. Taiyuan: Taiyuan University of Technology, 2023. | |
| [24] | Slack G A. Nonmetallic crystals with high thermal conductivity[J]. Journal of Physics and Chemistry of Solids, 1973, 34(2): 321-335. |
| [25] | Progelhof R C, Throne J L, Ruetsch R R. Methods for predicting the thermal conductivity of composite systems: a review[J]. Polymer Engineering & Science, 1976, 16(9): 615-625. |
| [26] | 方文振, 张虎, 屈肖迪, 等. 遮光剂对气凝胶复合材料隔热性能的影响[J]. 化工学报, 2014, 65(S1): 168-174. |
| Fang W Z, Zhang H, Qu X D, et al. Effect of sunscreen on thermal insulation performance of aerogel composites[J]. CIESC Journal, 2014, 65(S1): 168-174. | |
| [27] | 王松涛. SiO2气凝胶微球在水性隔热涂料中的多尺度热力学特性研究[D]. 青岛: 青岛理工大学, 2023. |
| Wang S T. Study on multi-scale thermodynamic properties of SiO2 aerogel microspheres in waterborne thermal insulation coatings[D]. Qingdao: Qingdao University of Technology, 2023. | |
| [28] | 杜浩然, 邢益强, 李祥, 等. 纤维和遮光剂对纳米孔粉体隔热材料性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3257-3264. |
| Du H R, Xing Y Q, Li X, et al. Effects of fibers and opacifiers on properties of nanoporous powder insulation material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3257-3264. | |
| [29] | Wei G S, Liu Y S, Zhang X X, et al. Thermal conductivities study on silica aerogel and its composite insulation materials[J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2355-2366. |
| [30] | Randrianalisoa J, Baillis D, Pilon L. Modeling radiation characteristics of semitransparent media containing bubbles or particles[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2006, 23(7): 1645-1656. |
| [31] | Zhao J J, Duan Y Y, Wang X D, et al. Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation[J]. International Journal of Thermal Sciences, 2013, 70: 54-64. |
| [32] | 朱传勇,李增耀, 庞昊强. 核壳结构遮光剂对SiO2气凝胶辐射传热的影响[J]. 工程热物理学报, 2019, 40(2): 429-434. |
| Zhu C Y, Li Z Y, Pang H Q. Investigation on the influence of core/shell opacifiers on the radiative heat transfer of silica aerogels[J]. Journal of Engineering Thermophysics, 2019, 40(2): 429-434. |
| [1] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [2] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [3] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [4] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [5] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [6] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [7] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [8] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [9] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [10] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [11] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [12] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [13] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [14] | 王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486. |
| [15] | 李雪雯, 王治红, 高阳, 吴明鸥, 马文皓, 谭仁敏. 基于热泵技术的醇胺法脱硫再生系统多目标优化研究[J]. 化工学报, 2025, 76(9): 4563-4577. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号