• •
收稿日期:2025-09-08
修回日期:2025-12-03
出版日期:2025-12-04
通讯作者:
马原
作者简介:张荣达(2002—),女,硕士研究生,zrd020611@163.com
基金资助:
Rongda ZHANG(
), Yuan MA(
), Yunlong WANG, Kang WANG, Yanzhong LI
Received:2025-09-08
Revised:2025-12-03
Online:2025-12-04
Contact:
Yuan MA
摘要:
为研究微重力条件下低温贮箱加注-保持-排气式(CHV)预冷特性,以液氮贮箱为对象构建CHV预冷全过程热平衡数值模型,与液氮地面及飞行实验进行模型验证,分析预冷过程壁面温度、压力及沸腾传热特性,研究重力条件、低导热涂层、加注流量及排气次数对预冷性能的影响,并对应提出预冷优化策略。结果表明:CHV预冷周期中加注、保持和排气阶段的壁面冷却速率整体呈现减小趋势;CHV预冷过程中前期液壁间传热以膜沸腾为主,时间占比超过80%;CHV贮箱预冷性能与重力条件成正相关,微重力条件小于等于10-3g时预冷性能会显著降低;贮箱内壁增加四氟乙烯低导热涂层预冷可缩短膜沸腾传热时间,使预冷前期效率及速率分别提升17%和15%;变加注质量流量预冷可以较好地平衡质量及时间消耗,其中高温区小流量低温区大流量预冷速率较高,时效性更好,反之预冷效率较高,更侧重经济性;多次排气预冷可增强对低温流体冷却潜能的再利用,其中预冷周期两次排气较单次排气预冷效率提高10%,预冷速率仅降低3.4%。
中图分类号:
张荣达, 马原, 王云龙, 王康, 厉彦忠. 微重力条件下低温贮箱加注-保持-排气式预冷特性研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251013.
Rongda ZHANG, Yuan MA, Yunlong WANG, Kang WANG, Yanzhong LI. Characteristics research of the charge-hold-vent method for cryogenic propellant tank chilldown in microgravity[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251013.
| 沸腾传热阶段 | 传热关联式[ |
|---|---|
| 核态沸腾区域qnb | |
| 临界热流密度qCHF | |
| 过渡沸腾区域qtb | |
| 最小热流密度qMHF | |
| 膜态沸腾区域qfb |
表1 贮箱CHV预冷模型中沸腾传热关联式
Table 1 Boiling correlations in tank CHV chilldown model
| 沸腾传热阶段 | 传热关联式[ |
|---|---|
| 核态沸腾区域qnb | |
| 临界热流密度qCHF | |
| 过渡沸腾区域qtb | |
| 最小热流密度qMHF | |
| 膜态沸腾区域qfb |
| 不同案例 | 结构参数 | 结构参数值 | 预冷参数 | 预冷参数值 |
|---|---|---|---|---|
| 地面实验[ | 球体内径/m | 0.7544 | 重力条件 | g |
| 壁厚/m | 0.0013 | 初始壁温/K | 290 | |
| 贮箱容积/m3 | 0.22 | 进液温度/K | 85 | |
| 贮箱材料 | 6-4Ti | 初始箱内压力/kPa | 13.80 | |
| 初始箱内相态 | 气态 | |||
| 飞行实验[ | 圆柱体高度/m | 0.127 | 重力条件 | 10-2g~1.8g |
| 圆柱体内径/m | 0.273 | 初始壁温/K | 280~300 | |
| 壁厚/m | 0.0015 | 进液温度/K | 75 | |
| 贮箱材料 | 304不锈钢 | 初始箱内压力/kPa | 50 | |
| 初始箱内相态 | 气态 |
表2 验证案例的主要参数
Table 2 Main parameters of the verification cases
| 不同案例 | 结构参数 | 结构参数值 | 预冷参数 | 预冷参数值 |
|---|---|---|---|---|
| 地面实验[ | 球体内径/m | 0.7544 | 重力条件 | g |
| 壁厚/m | 0.0013 | 初始壁温/K | 290 | |
| 贮箱容积/m3 | 0.22 | 进液温度/K | 85 | |
| 贮箱材料 | 6-4Ti | 初始箱内压力/kPa | 13.80 | |
| 初始箱内相态 | 气态 | |||
| 飞行实验[ | 圆柱体高度/m | 0.127 | 重力条件 | 10-2g~1.8g |
| 圆柱体内径/m | 0.273 | 初始壁温/K | 280~300 | |
| 壁厚/m | 0.0015 | 进液温度/K | 75 | |
| 贮箱材料 | 304不锈钢 | 初始箱内压力/kPa | 50 | |
| 初始箱内相态 | 气态 |
| 案例 | 预冷消耗时间/s | 预冷消耗质量/kg | 壁面冷却温差/K |
|---|---|---|---|
| 地面实验[ | 2017 | 6.40 | 140 |
| 地面模拟 | 2017 | 6.33 | 133 |
| 飞行实验[ | 350 | 2.83 | 190 |
| 飞行模拟 | 350 | 2.70 | 190 |
表3 预冷性能关键参数对比
Table 3 Comparison of key parameters of chilldown performance
| 案例 | 预冷消耗时间/s | 预冷消耗质量/kg | 壁面冷却温差/K |
|---|---|---|---|
| 地面实验[ | 2017 | 6.40 | 140 |
| 地面模拟 | 2017 | 6.33 | 133 |
| 飞行实验[ | 350 | 2.83 | 190 |
| 飞行模拟 | 350 | 2.70 | 190 |
| 重力条件 | 初始贮箱壁温/K | 贮箱最大工作 压力限值/kPa | 贮箱排气 压力/kPa | 贮箱最小气壁温差限值/K | 预冷周期固定加注质量/kg | 进液 温度/K | 预冷目标温度/K |
|---|---|---|---|---|---|---|---|
| 10-2g | 300 | 1000 | 55 | 10 | 0.48 | 75 | 100 |
表4 液氮贮箱CHV预冷模拟工况参数
Table 4 Liquid nitrogen tank CHV chilldown simulation parameters
| 重力条件 | 初始贮箱壁温/K | 贮箱最大工作 压力限值/kPa | 贮箱排气 压力/kPa | 贮箱最小气壁温差限值/K | 预冷周期固定加注质量/kg | 进液 温度/K | 预冷目标温度/K |
|---|---|---|---|---|---|---|---|
| 10-2g | 300 | 1000 | 55 | 10 | 0.48 | 75 | 100 |
| [1] | 马原, 厉彦忠, 王磊, 等. 低温推进剂在轨加注技术与方案研究综述[J]. 宇航学报, 2016, 37(3): 245-252. |
| Ma Y, Li Y Z, Wang L, et al. Review on on-orbit refueling techniques and schemes of cryogenic propellants[J]. Journal of Astronautics, 2016, 37(3): 245-252. | |
| [2] | 王磊, 厉彦忠, 马原, 等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报, 2016, 31(8): 2002-2009. |
| Wang L, Li Y Z, Ma Y, et al. On-orbit refilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8): 2002-2009. | |
| [3] | 王磊, 厉彦忠, 张少华, 等. 低温推进剂空间管理技术研究进展与展望[J]. 宇航学报, 2020, 41(7): 978-988. |
| Wang L, Li Y Z, Zhang S H, et al. Research progress and outlooks of cryogenic propellant space management technologies[J]. Journal of Astronautics, 2020, 41(7): 978-988. | |
| [4] | 李佳超, 梁国柱, 王夕, 等. 氢氧推进剂在轨加注若干关键问题研究进展[J]. 宇航总体技术, 2019, 3(6): 60-74. |
| Li J C, Liang G Z, Wang X, et al. Research progress on several key problems of on-orbit refueling technologies for hydrogen-oxygen propellants[J]. Astronautical Systems Engineering Technology, 2019, 3(6): 60-74. | |
| [5] | Hartwig J, Rhys N, Clark J, et al. Test data analysis of the vented chill, No-vent fill liquid nitrogen CRYOTE-2 experiments[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120781. |
| [6] | Hartwig J, Moore R, Mercado M. Test data analysis of the liquid hydrogen chilldown and fill transfer experiments on a flightweight aluminum tank[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123766. |
| [7] | 马原, 陈虹, 邢科伟, 等. 低温推进剂网幕通道式液体获取装置性能研究进展[J]. 制冷学报, 2019, 40(3): 1-7. |
| Ma Y, Chen H, Xing K W, et al. Review of screen channel liquid acquisition device for cryogenic propellants[J]. Journal of Refrigeration, 2019, 40(3): 1-7. | |
| [8] | 李子安, 崔晨乙, 白云, 等. 低温推进剂在轨加注过程中气液相管理技术综述[J]. 空天技术, 2022, (5): 68-80. |
| Li Z A, Cui C Y, Bai Y, et al. A review of gas-liquid phase management techniques for low-temperature propellants on orbital refueling[J]. Aerospace Technology, 2022, (5): 68-80. | |
| [9] | Hartwig J W. Propellant management devices for low-gravity fluid management: past, present, and future applications[J]. Journal of Spacecraft and Rockets, 2017, 54(4): 808-824. |
| [10] | Defelice D, Aydelott J. Thermodynamic analysis and subscale modeling of space-based orbit transfer vehicle cryogenic propellant resupply[C]//23rd Joint Propulsion Conference. San Diego, CA. Reston, Virginia: AIAA, 1987: 1764. |
| [11] | Chato D, Sanabria R. Review and test of chilldown methods for space-based cryogenic tanks[C]//27th Joint Propulsion Conference. Sacramento, CA. Reston, Virginia: AIAA, 1991: 1843. |
| [12] | Honkonen S, Bennett, JR F, Hepworth H. An analytic model for low-gravity tank chilldown and no-vent fill - The general dynamics no-vent fill program (GDNVF)[C]//26th Thermophysics Conference. Honolulu, HI. Reston, Virginia: AIAA, 1991: 1380. |
| [13] | Honkonen S C, Pietrzyk J R, Schuster J R. Analysis of pulsed injection for microgravity receiver tank chilldown[M]//Advances in Cryogenic Engineering. Boston, MA: Springer US, 1992: 1265-1272. |
| [14] | Keefer K A, Hartwig J. Development and validation of an analytical charge–hold–vent model for cryogenic tank chilldown[J]. International Journal of Heat and Mass Transfer, 2016, 101: 175-189. |
| [15] | Mercado M, Hartwig J. Parametric analysis of the Charge-Hold-Vent method for cryogenic propellant tank chilldown[J]. IOP Conference Series: Materials Science and Engineering, 2024, 1301(1): 012163. |
| [16] | Lee H, Yun S, Kim G, et al. Numerical analysis on pre-cooling processes of liquefied hydrogen tank[J]. Applied Thermal Engineering, 2025, 262: 125243. |
| [17] | Hartwig J, Stephens J, Rhys N, et al. Test data analysis of the thermodynamic vent system-augmented top spray injector liquid nitrogen transfer experiments[J]. International Journal of Heat and Mass Transfer, 2022, 194: 122986. |
| [18] | Chung J N, Dong J, Wang H, et al. Demonstration of charge-hold-vent (CHV) and no-vent-fill (NVF) in a simulated propellent storage tank during tank-to-tank cryogen transfer in microgravity[J]. NPJ Microgravity, 2024, 10: 65. |
| [19] | Ma Y, Zhang Y, Luo X Z, et al. Analysis and modeling of No-vent filling process for liquid-hydrogen tank in orbital conditions[J]. Processes, 2023, 11(5): 1315. |
| [20] | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 232-233. |
| Tao W Q. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019: 232-233. | |
| [21] | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. |
| Tao W Q. Numerical heat transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001. | |
| [22] | Kida M, Kikuchci Y, Takahashi O, et al. Pool-boiling heat transfer in liquid nitrogen[J]. Journal of Nuclear Science and Technology, 1981, 18(7): 501-513. |
| [23] | Nguyen L D, Kim M, Chung K, et al. Transient pool boiling of liquid nitrogen (a safe analogue of LNG) on AISI 304 stainless steel flat surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121450. |
| [24] | Darr S, Dong J, Glikin N, et al. The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown[J]. NPJ Microgravity, 2016, 2: 16033. |
| [25] | Wang L, Shangguan S, Qu M, et al. Variation of Leidenfrost temperature in liquid nitrogen pipe chilldown process and its application in chilldown performance analysis[J]. International Journal of Multiphase Flow, 2022, 156: 104225. |
| [26] | Ahmad F, Meyer M, Hartwig J, et al. Development of new correlations for critical heat flux point wall temperature and transition boiling under steady-state saturated pool boiling of cryogens[J]. International Journal of Heat and Mass Transfer, 2025, 239: 126592. |
| [27] | Ahmad F, Foster D, Kim S, et al. Method for generating a complete saturated pool boiling curve for cryogenic fluids under terrestrial gravity[J]. International Journal of Heat and Mass Transfer, 2025, 243: 126876. |
| [28] | Chung J N, Dong J, Wang H, et al. Cryogenic spray quenching of simulated propellant tank wall using coating and flow pulsing in microgravity[J]. NPJ Microgravity, 2022, 8: 7. |
| [29] | Chung J N, Dong J, Wang H, et al. Effects of microgravity on cryogenic spray quenching of a simulated propellant storage tank with enhancement by surface coating and flow pulsing[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106290. |
| [30] | Chung J N, Dong J, Wang H, et al. Enhancement of convective quenching heat transfer by coated tubes and intermittent cryogenic pulse flows[J]. International Journal of Heat and Mass Transfer, 2019, 141: 256-264. |
| [31] | Chung J N, Darr S R, Dong J, et al. Heat transfer enhancement in cryogenic quenching process[J]. International Journal of Thermal Sciences, 2020, 147: 106117. |
| [1] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [2] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [3] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [4] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [5] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [6] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [7] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [8] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [9] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [10] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [11] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [12] | 吴迪, 胡斌, 姜佳彤. R1233zd(E)高温热泵实验研究与应用分析[J]. 化工学报, 2025, 76(S1): 377-383. |
| [13] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [14] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [15] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号