• •
梁国浩1(
), 孔昕山1, 康丽霞1,2(
), 刘永忠1,2
收稿日期:2025-10-07
修回日期:2025-11-05
出版日期:2025-11-18
通讯作者:
康丽霞
作者简介:梁国浩(2003—),男,硕士研究生,ghliang@stu.xjtu.edu.cn
基金资助:
Guohao LIANG1(
), Xinshan KONG1, Lixia KANG1,2(
), Yongzhong LIU1,2
Received:2025-10-07
Revised:2025-11-05
Online:2025-11-18
Contact:
Lixia KANG
摘要:
绿色合成氨是可再生能源消纳和储氢的重要途径,但其生产受制于可再生能源和绿氢供应的波动性。探究合成氨系统的运行特性,从而确定其实际允许的操作窗口是解决绿氨合成系统操作灵活性的关键。结合稳态与动态模拟及设备设计,提出了考虑动态响应特性的操作窗口确定方法。在给定设计条件与设备约束下,分析了典型设备操作窗口特性,确定了系统在稳态与动态工况下的操作窗口。研究表明:经过设备优化后的系统操作窗口为60%~189%,较名义设计方案提升了43%,动态下操作窗口收窄至88%~156%。动态操作下限受控制系统稳定性限制,上限受弛放率约束。此外,受现行控制器性能限制,进料爬坡率需低于36%以维持稳定。该研究揭示了动态过程中设备耦合行为对系统操作边界的影响机制,可为绿氨系统控制策略优化提供指导。
中图分类号:
梁国浩, 孔昕山, 康丽霞, 刘永忠. 考虑动态响应特性的绿氨合成系统操作窗口确定方法[J]. 化工学报, DOI: 10.11949/0438-1157.20251113.
Guohao LIANG, Xinshan KONG, Lixia KANG, Yongzhong LIU. A method for determining the operating window of green ammonia synthesis system considering dynamic response characteristics[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251113.
| 参数 | 单位 | 数值 | |
|---|---|---|---|
| 催化剂参数 | 密度 | kg·m-3 | 2200 |
| 热容 | J·kg-1·K-1 | 1100 | |
| 颗粒水力直径 | mm | 2.85 | |
| 工艺参数 | 氨产量 | t·a-1 | 12072 |
| 产品浓度 | wt% | 99 | |
| 反应器进料温度 | ℃ | 250 | |
| 进料压力 | MPa | 20 | |
| HE-2传热面积 | m2 | 6.1 | |
| HE-2传热系数 | W·m-2·K-1 | 536 | |
| 闪蒸罐温度 | ℃ | 40 | |
| 闪蒸罐压力 | MPa | 19.3 | |
| 闪蒸罐体积 | m3 | 50 | |
| 弛放率 | % | 5 | |
表1 合成氨工艺的基本参数[24-25]
Table 1 Fundamental parameters of ammonia synthesis process[24-25]
| 参数 | 单位 | 数值 | |
|---|---|---|---|
| 催化剂参数 | 密度 | kg·m-3 | 2200 |
| 热容 | J·kg-1·K-1 | 1100 | |
| 颗粒水力直径 | mm | 2.85 | |
| 工艺参数 | 氨产量 | t·a-1 | 12072 |
| 产品浓度 | wt% | 99 | |
| 反应器进料温度 | ℃ | 250 | |
| 进料压力 | MPa | 20 | |
| HE-2传热面积 | m2 | 6.1 | |
| HE-2传热系数 | W·m-2·K-1 | 536 | |
| 闪蒸罐温度 | ℃ | 40 | |
| 闪蒸罐压力 | MPa | 19.3 | |
| 闪蒸罐体积 | m3 | 50 | |
| 弛放率 | % | 5 | |
| 参数 | 单位 | 数值 |
|---|---|---|
| 直径 | m | 1.00 |
| 床层总长度 | m | 5.00 |
| 第1段床层长度 | m | 1.06 |
| 第2段床层长度 | m | 1.53 |
| 第3段床层长度 | m | 2.41 |
| 床层空隙率 | / | 0.33 |
| 催化剂装填总量 | kg | 5788 |
表2 反应器床层参数
Table 2 Reactor bed layer parameters
| 参数 | 单位 | 数值 |
|---|---|---|
| 直径 | m | 1.00 |
| 床层总长度 | m | 5.00 |
| 第1段床层长度 | m | 1.06 |
| 第2段床层长度 | m | 1.53 |
| 第3段床层长度 | m | 2.41 |
| 床层空隙率 | / | 0.33 |
| 催化剂装填总量 | kg | 5788 |
| 参数 | 单位 | HE-1 | HE-3 |
|---|---|---|---|
| 管程/壳程 | / | 1/1 | 1/1 |
| 壳程直径 | mm | 380 | 470 |
| 换热管直径 | mm | 12 | 25 |
| 管心距 | mm | 16 | 32 |
| 管长 | mm | 3800 | 4700 |
| 换热管数量 | 根 | 321 | 152 |
| 换热面积 | m2 | 44.1 | 53.7 |
表3 换热器设计参数
Table 3 Heat exchanger design parameters
| 参数 | 单位 | HE-1 | HE-3 |
|---|---|---|---|
| 管程/壳程 | / | 1/1 | 1/1 |
| 壳程直径 | mm | 380 | 470 |
| 换热管直径 | mm | 12 | 25 |
| 管心距 | mm | 16 | 32 |
| 管长 | mm | 3800 | 4700 |
| 换热管数量 | 根 | 321 | 152 |
| 换热面积 | m2 | 44.1 | 53.7 |
| 约束条件 | 单位 | HE-1 | HE-3 | ||
|---|---|---|---|---|---|
| 下限 | 上限 | 下限 | 上限 | ||
| 管/壳程流速 | m·s-1 | 2/1 | 30/9.5 | 1/1 | 3.5/9.5 |
| 主相流Re | / | 10000 | / | 10000 | / |
| 管/壳程压降 | kPa | 0/0 | 100/100 | 0/0 | 30/100 |
| ρv2 | kg·m-1·s-2 | 0 | 5953 | 0 | 5953 |
| 面积裕量 | % | 5 | / | 5 | / |
表4 换热器约束条件
Table 4 Heat exchanger constraints
| 约束条件 | 单位 | HE-1 | HE-3 | ||
|---|---|---|---|---|---|
| 下限 | 上限 | 下限 | 上限 | ||
| 管/壳程流速 | m·s-1 | 2/1 | 30/9.5 | 1/1 | 3.5/9.5 |
| 主相流Re | / | 10000 | / | 10000 | / |
| 管/壳程压降 | kPa | 0/0 | 100/100 | 0/0 | 30/100 |
| ρv2 | kg·m-1·s-2 | 0 | 5953 | 0 | 5953 |
| 面积裕量 | % | 5 | / | 5 | / |
| 设计场景 | 设备 | 设计参数 | 设备操作窗口 | 生产系统操作窗口 | |||
|---|---|---|---|---|---|---|---|
| 名义设计 | 反应器 | 直径/m | 长度/m | 长径比 | 催化剂/kg | 53%~189% | 60%~150% |
| 1.00 | 5.00 | 5 | 5788 | ||||
| 换热器HE-1 | 壳径/mm | 管长/mm | 长径比 | 换热面积/m2 | 58%~181% | ||
| 380 | 3800 | 10 | 44.1 | ||||
| 换热器HE-3 | 壳径/mm | 管长/mm | 长径比 | 换热面积/m2 | 60%~150% | ||
| 470 | 4700 | 10 | 53.7 | ||||
| 最大操作窗口 | 反应器 | 直径/m | 长度/m | 长径比 | 催化剂/kg | 53%~263% | 60%~189% |
| 1.14 | 4.56 | 4 | 6860 | ||||
| 换热器HE-1 | 壳径/mm | 管长/mm | 长径比 | 换热面积/m2 | 58%~259% | ||
| 380 | 4500 | 12 | 52.8 | ||||
| 换热器HE-3 | 壳径/mm | 管长/mm | 长径比 | 换热面积/m2 | 60%~189% | ||
| 470 | 5600 | 12 | 64.5 | ||||
表5 典型设计方案的设备组合参数
Table 5 Typical design scheme's equipment combination parameters
| 设计场景 | 设备 | 设计参数 | 设备操作窗口 | 生产系统操作窗口 | |||
|---|---|---|---|---|---|---|---|
| 名义设计 | 反应器 | 直径/m | 长度/m | 长径比 | 催化剂/kg | 53%~189% | 60%~150% |
| 1.00 | 5.00 | 5 | 5788 | ||||
| 换热器HE-1 | 壳径/mm | 管长/mm | 长径比 | 换热面积/m2 | 58%~181% | ||
| 380 | 3800 | 10 | 44.1 | ||||
| 换热器HE-3 | 壳径/mm | 管长/mm | 长径比 | 换热面积/m2 | 60%~150% | ||
| 470 | 4700 | 10 | 53.7 | ||||
| 最大操作窗口 | 反应器 | 直径/m | 长度/m | 长径比 | 催化剂/kg | 53%~263% | 60%~189% |
| 1.14 | 4.56 | 4 | 6860 | ||||
| 换热器HE-1 | 壳径/mm | 管长/mm | 长径比 | 换热面积/m2 | 58%~259% | ||
| 380 | 4500 | 12 | 52.8 | ||||
| 换热器HE-3 | 壳径/mm | 管长/mm | 长径比 | 换热面积/m2 | 60%~189% | ||
| 470 | 5600 | 12 | 64.5 | ||||
| 约束条件 | 单位 | 下限 | 上限 |
|---|---|---|---|
| 控制器响应时间 | hour | 0 | 1.5 |
| 被控变量变化幅度 | % | -2 | +2 |
| 闪蒸罐液位 | m | 1.6 | 8 |
| 弛放率 | % | 0 | 5 |
表6 合成氨系统动态操作的约束条件
Table 6 Dynamic operating window constraints
| 约束条件 | 单位 | 下限 | 上限 |
|---|---|---|---|
| 控制器响应时间 | hour | 0 | 1.5 |
| 被控变量变化幅度 | % | -2 | +2 |
| 闪蒸罐液位 | m | 1.6 | 8 |
| 弛放率 | % | 0 | 5 |
| [1] | Suryanto B H R, Du H L, Wang D B, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nature Catalysis, 2019, 2(4): 290-296. |
| [2] | Wen Z X, Huang B, Wang Y L, et al. Ammonia as a renewable energy carrier from synthesis to utilization[J]. Nature Reviews Clean Technology, 2025, 1(11): 755-770. |
| [3] | Guo J P, Chen P. Catalyst: NH3 as an energy carrier[J]. Chem, 2017, 3(5): 709-712. |
| [4] | 杨鹏威, 于琳竹, 王放放, 等. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
| Yang P W, Yu L Z, Wang F F, et al. Application prospect, challenge and development of ammonia energy storage in new power system[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4432-4446. | |
| [5] | 夏鑫, 蔺建民, 李妍, 等. 氨混合燃料体系的性能研究现状[J]. 化工进展, 2022, 41(5): 2332-2339. |
| Xia X, Lin J M, Li Y, et al. Research progress on performance and application of ammonia fuel on engines[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2332-2339. | |
| [6] | Bora N, Kumar Singh A, Pal P, et al. Green ammonia production: Process technologies and challenges[J]. Fuel, 2024, 369: 131808. |
| [7] | Nayak-Luke R, Bañares-Alcántara R, Wilkinson I. "Green" ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammonia[J]. Industrial & Engineering Chemistry Research, 2018, 57(43): 14607-14616. |
| [8] | Seifert T, Lesniak A K, Sievers S, et al. Capacity flexibility of chemical plants[J]. Chemical Engineering & Technology, 2014, 37(2): 332-342. |
| [9] | Fogel S, Unger S, Hampel U. Operating windows and techno-economics of a power-to-methanol process utilizing proton-conducting high temperature electrolyzers[J]. Journal of CO2 Utilization, 2024, 82: 102758. |
| [10] | Herrmann F, Grünewald M, Riese J. Model-based design of a segmented reactor for the flexible operation of the methanation of CO2 [J]. International Journal of Hydrogen Energy, 2023, 48(25): 9377-9389. |
| [11] | Pazmiño-Mayorga I, Jobson M, Kiss A A. Operating windows for early evaluation of the applicability of advanced reactive distillation technologies[J]. Chemical Engineering Research and Design, 2023, 189: 485-499. |
| [12] | Radatz H, Schröder M, Becker C, et al. Selection of equipment modules for a flexible modular production plant by a multi-objective evolutionary algorithm[J]. Computers & Chemical Engineering, 2019, 123: 196-221. |
| [13] | Wu Y, Zhao T T, Tang S, et al. Research on design and multi-frequency scheduling optimization method for flexible green ammonia system[J]. Energy Conversion and Management, 2024, 300: 117976. |
| [14] | 孔昕山, 高鑫, 康丽霞, 等. 可再生甲醇生产系统操作窗口特性分析与调控[J]. 化工学报, 2024, 75(12): 4617-4628. |
| Kong X S, Gao X, Kang L X, et al. Analysis and regulation on operating window of renewable methanol production system[J]. CIESC Journal, 2024, 75(12): 4617-4628. | |
| [15] | Klein H, Fritsch P, Haider P, et al. Flexible operation of air separation units[J]. ChemBioEng Reviews, 2021, 8(4): 357-374. |
| [16] | Mucci S, Mitsos A, Bongartz D. Power-to-X processes based on PEM water electrolyzers: a review of process integration and flexible operation[J]. Computers & Chemical Engineering, 2023, 175: 108260. |
| [17] | Rifat Boynuegri A, Tekgun B. Real-time energy management in an off-grid smart home: Flexible demand side control with electric vehicle and green hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(60): 23146-23155. |
| [18] | Khademi M H, Sabbaghi R S. Comparison between three types of ammonia synthesis reactor configurations in terms of cooling methods[J]. Chemical Engineering Research and Design, 2017, 128: 306-317. |
| [19] | Ostuni R, Zardi F. Method for load regulation of an ammonia plant: US9463983B2[P]. 2016-10-11. |
| [20] | Lin B S, Wiesner T, Malmali M. Performance of a small-scale Haber process: a techno-economic analysis[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15517-15531. |
| [21] | Verleysen K, Parente A, Contino F. How sensitive is a dynamic ammonia synthesis process Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)[J]. Energy, 2021, 232: 121016. |
| [22] | 解光燕, 叶枫, 王中博, 等. 应用ASPEN模拟氨合成回路的物性方法分析[J]. 化工进展, 2010, 29(S1): 481-483. |
| Xie G Y, Ye F, Wang Z B, et al. Analysis of physical properties of ammonia synthesis loop simulated by ASPEN[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 481-483. | |
| [23] | Araújo A, Skogestad S. Control structure design for the ammonia synthesis process[J]. Computers & Chemical Engineering, 2008, 32(12): 2920-2932. |
| [24] | Morud J C, Skogestad S. Analysis of instability in an industrial ammonia reactor[J]. AIChE Journal, 1998, 44(4): 888-895. |
| [25] | Kong B W, Zhang Q, Daoutidis P. Nonlinear model predictive control of flexible ammonia production[J]. Control Engineering Practice, 2024, 148: 105946. |
| [26] | Wen L M, Huang C, Dai Z D, et al. Dynamic simulation and optimization for load regulation strategies of the green ammonia synthesis process[J]. Industrial & Engineering Chemistry Research, 2024, 63(45): 19662-19675. |
| [27] | Rosbo J W, Ritschel T K S, Hørsholt S, et al. Flexible operation, optimisation and stabilising control of a quench cooled ammonia reactor for power-to-ammonia[J]. Computers & Chemical Engineering, 2023, 176: 108316. |
| [28] | 刘秀峰, 张诗, 周志杰, 等. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105. |
| Liu X F, Zhang S, Zhou Z J, et al. Study on structure optimization of heat exchanger and evaluation index of heat transfer performance[J]. CIESC Journal, 2020, 71(S1): 98-105. | |
| [29] | 孟雪, 荆恒铸, 曹真真, 等. 基于Aspen EDR的管壳式换热器的设计[J]. 化工进展, 2019, 38(S1): 275-277. |
| Megn X, Jing H Z, Cao Z Z, et al. Design of shell and tube heat exchanger based on Aspen EDR[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 275-277. | |
| [30] | 孙兰义, 马占华, 王志刚, 等. 换热器工艺设计[M]. 北京: 中国石化出版社, 2015: 121-126. |
| Sun L Y, Ma Z H, Wang Z G, et al. Thermal design of heat exchangers[M]. Beijing: China Petrochemical Press, 2015: 121-126. | |
| [31] | Zhang C, Vasudevan S, Rangaiah G P. Plantwide control system design and performance evaluation for ammonia synthesis process[J]. Industrial & Engineering Chemistry Research, 2010, 49(24): 12538-12547. |
| [32] | Klemeš J J, Varbanov P S. Heat integration including heat exchangers, combined heat and power, heat pumps, separation processes and process control[J]. Applied Thermal Engineering, 2012, 43: 1-6. |
| [33] | 刘曦, 林钰婷, 王栋, 等. "氨-氢"能源背景下临氨设备失效行为及分析技术研究进展[J]. 化工进展, 2025, 44(10): 5547-5562. |
| Liu X, Lin Y T, Wang D, et al. Research progress on failure behavior and analysis technique of ammonia equipment under the background of "ammonia-hydrogen" energy[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5547-5562. | |
| [34] | 熊敏, 刘冬妹, 王智超, 等. 变负荷条件下绿氨生产操作参数的调控与优化[J]. 化工学报, 2025, 76(6): 2791-2801. |
| Xiong M, Liu D M, Wang Z C, et al. Optimization and adjustment of operating parameters for green ammonia production under variable load conditions[J]. CIESC Journal, 2025, 76(6): 2791-2801. | |
| [35] | Luyben W L. Design and control of gas-phase reactor/recycle processes with reversible exothermic reactions[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1529-1538. |
| [1] | 孟祥军, 杨林睿, 彭立培, 杨献奎, 花莹曦, 张人仁, 郑凯天, 许春建. 三氟化氮精馏分离流程的设计与控制[J]. 化工学报, 2025, 76(2): 707-717. |
| [2] | 孔昕山, 高鑫, 康丽霞, 刘永忠. 可再生甲醇生产系统操作窗口特性分析与调控[J]. 化工学报, 2024, 75(12): 4617-4628. |
| [3] | 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758. |
| [4] | 张镨, 周理, 郭开华, 陈正华, 王伟杰. 基于多点耦合的低温多股流换热过程动态模拟[J]. 化工学报, 2018, 69(S2): 167-173. |
| [5] | 邱洁, 华涛, 何桂春, 伍祥, 沈海涛, 凌昊. Kaibel分壁精馏塔的压力补偿-温度控制[J]. 化工学报, 2018, 69(11): 4798-4813. |
| [6] | 阎海宇, 付强, 周言, 李冬冬, 张东辉. 真空变压吸附捕集烟道气中二氧化碳的模拟、实验及分析[J]. 化工学报, 2016, 67(6): 2371-2379. |
| [7] | 薄翠梅, 黄庆庆, 汤吉海, 张广明, 乔旭. 醋酸甲酯侧反应精馏过程的多变量动态控制[J]. 化工学报, 2016, 67(3): 919-924. |
| [8] | 黄燕, 薄翠梅, 管国锋, 丁帅. PTA醋酸甲酯水解过程厂级稳态模拟与集成优化[J]. 化工学报, 2016, 67(3): 912-918. |
| [9] | 邓文源, 田连军, 童文龙, 李宁, 郭开华, 黎文锋. 大型LNG储罐预冷动态模拟[J]. 化工学报, 2015, 66(S2): 399-404. |
| [10] | 靳满满, 田文德, 张俊梅. FCCU反再系统异常工况的安全分析[J]. 化工学报, 2015, 66(9): 3649-3653. |
| [11] | 宋光, 赵永臣, 邱彤, 卢光明, 赵劲松, 陈丙珍. 乙烯装置开停车过程节能减排技术进展[J]. 化工学报, 2014, 65(7): 2696-2703. |
| [12] | 宋光, 赵永臣, 张圣夫, 邱彤, 赵劲松. 乙烯装置裂解气压缩机开车过程动态模拟[J]. 化工学报, 2014, 65(12): 4839-4843. |
| [13] | 李秀喜, 袁延江. 基于流程模拟的化工故障检测技术[J]. 化工学报, 2014, 65(11): 4472-4476. |
| [14] | 奂金龙, 占志良, 陈曦, 邵之江, 姚臻, 顾雪萍, 冯连芳. 乙烯淤浆聚合动态分子量分布模拟计算[J]. 化工学报, 2013, 64(4): 1312-1317. |
| [15] | 王大成1,钱才富2,曹生现3. 换热设备微生物污垢的动态模拟及影响因素分析[J]. 化工进展, 2013, 32(08): 1934-1938. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号