化工学报

• •    

基于SlowFast-Transformer的化工过程故障检测与风险预警

王瑞琪1(), 雷震1, 任思月1(), 段永丽2, 章结兵1, 张亚婷1   

  1. 1.西安科技大学化学与化工学院,陕西 西安 710054
    2.陕西省环境科学研究院,陕西 西安 710061
  • 收稿日期:2025-10-14 修回日期:2025-11-11 出版日期:2025-11-20
  • 通讯作者: 任思月
  • 作者简介:王瑞琪(1992—),男,博士,讲师,ruiqi.wang@xust.edu.cn
  • 基金资助:
    国家自然科学基金项目(2250082950);西安科技大学高层次人才引进项目(2050122018)

Chemical process fault detection and risk early warning based on SlowFast-Transformer

Ruiqi WANG1(), Zhen LEI1, Siyue REN1(), Yongli DUAN2, Jiebing ZHANG1, Yating ZHANG1   

  1. 1.College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
    2.Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, Shaanxi, China
  • Received:2025-10-14 Revised:2025-11-11 Online:2025-11-20
  • Contact: Siyue REN

摘要:

针对化工过程数据高维性、非线性及强时序相关的特点,提出了一种基于SlowFast网络与Transformer的多尺度时空融合故障诊断方法。该方法设计了双通道特征提取架构:Slow路径通过时间下采样卷积捕捉宏观过程特征,Fast路径则保留高时间分辨率卷积以提取局部动态特性,并结合Transformer的自注意力机制实现长程依赖建模。采用滑动窗口构建时空样本,最终实现故障的精准分类和实时监测。在TE过程数据集上的实验结果表明,所提出的模型在4层Transformer块堆叠下,在测试集上展现出优异的诊断性能。与文献中的模型DCNN(88.20%)、LSTM(95.37%)、CNN-LSTM(96.64%)、DCRNN(91.70%)相比,故障诊断准确率有显著提升(98.44%)。本方法将视频分析领域的SlowFast架构引入化工时序数据建模,并结合Transformer的全局感知能力,显著增强了模型的分类效果。进一步地,提出了一种新的预警能力评估方式,并结合实验结果探讨了SlowFast诊断性能与可解释性之间的关系,为复杂工业过程的故障诊断提供新的技术路径与理论参考。

关键词: 过程系统, 安全, 神经网络, 故障诊断, SlowFast网络, Transformer模型, 风险预警

Abstract:

Considering the high dimensionality, nonlinearity, and strong temporal correlations of chemical process data, this paper proposes a multi-scale spatiotemporal fusion fault diagnosis method based on the SlowFast network and Transformer. The method is designed with a dual-channel feature extraction architecture: the Slow pathway employs temporally down-sampled convolutions to capture macro-level process features, while the Fast pathway retains high temporal resolution convolutions to extract local dynamic characteristics. By integrating the self-attention mechanism of Transformer, long-range dependencies are effectively modeled. A sliding-window strategy is adopted to construct spatiotemporal samples, enabling accurate fault classification and real-time monitoring. Experimental results on the TE process dataset demonstrate that, with a four-layer Transformer block stack, the proposed model achieves outstanding diagnostic performance. Compared with existing models such as DCNN (88.20%), LSTM (95.37%), CNN-LSTM (96.64%), and DCRNN (91.70%), the proposed approach significantly improves fault diagnosis accuracy (98.44%). By introducing the SlowFast architecture from the video analysis domain into chemical process time-series modeling and combining it with the global perception capability of Transformer, the classification effectiveness is substantially enhanced. Furthermore, a novel early-warning evaluation metric is proposed, and the relationship between the diagnostic performance and interpretability of SlowFast is discussed based on experimental results, providing a new technical approach and theoretical reference for fault diagnosis in complex industrial processes.

Key words: process systems, safety, neural network, fault diagnosis, slowfast network, transformer model, risk early warning

中图分类号: