• •
收稿日期:2025-10-23
修回日期:2025-12-08
出版日期:2025-12-08
通讯作者:
王晓坡
作者简介:池琛晗(2001—),男,硕士研究生,chich@stu.xjtu.edu.cn
基金资助:
Chenhan CHI(
), Wenzhe DANG, Xiaopo WANG(
)
Received:2025-10-23
Revised:2025-12-08
Online:2025-12-08
Contact:
Xiaopo WANG
摘要:
CO2因其极低的全球变暖潜能(GWP=1)和臭氧消耗潜能(ODP=0)而被认为是汽车空调领域的替代制冷剂,而CO2与润滑油的相平衡(溶解度)是制冷系统设计、优化所必需的基础物性。为了查明POE类润滑油中各组分对CO2的吸收能力,采用等体积饱和法测量了CO2在两种POE润滑油纯组分即双季戊四醇六戊酸酯(DiPEC5)和双季戊四醇六庚酸酯(DiPEC7)中的溶解度,测量的温度范围为283.15 K-343.15 K。使用SRK方程并结合修正的van der Waals-Berthelot混合法则对实验数据进行了关联。结果表明,CO2/DiPEC5和CO2/DiPEC7体系的实验平衡压力和模型计算值之间的平均绝对相对偏差分别为1.73%和2.25%,最大相对偏差分别为7.90%和7.82%。此外,还对比分析了CO2在POE润滑油不同纯组分(直链季戊四醇酯PEC、支链季戊四醇酯PEBM以及直链双季戊四醇酯DiPEC)中的溶解度,发现CO2在DiPEC中的溶解度显著高于PEC和PEBM。本文工作为进一步研发新型的润滑油提供了基础的物性数据。
中图分类号:
池琛晗, 党文喆, 王晓坡. CO2在双季戊四醇酯中的溶解度实验研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251179.
Chenhan CHI, Wenzhe DANG, Xiaopo WANG. Experimental investigation on solubility of CO2 in two dipentaerythritol esters[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251179.
| 不确定度来源 | 数值 |
|---|---|
| u(Vgasc ) | 0.02 cm3 |
| u(Vequic ) | 0.02 cm3 |
| u(Voil ) | 0.003 cm3 |
| u(ρ1) | 1.6×10-5 g·cm-3 |
| 6×10-5 g·cm-3 | |
| u(m2) | 10-4 g |
| 压力传感器 | 2 kPa |
| 铂电阻温度计 | 0.03 K |
| 整体拓展不确定度 | <3.5% |
表1 影响CO2溶解度不确定度来源
Table 1 Measurement uncertainty of CO2 solubility
| 不确定度来源 | 数值 |
|---|---|
| u(Vgasc ) | 0.02 cm3 |
| u(Vequic ) | 0.02 cm3 |
| u(Voil ) | 0.003 cm3 |
| u(ρ1) | 1.6×10-5 g·cm-3 |
| 6×10-5 g·cm-3 | |
| u(m2) | 10-4 g |
| 压力传感器 | 2 kPa |
| 铂电阻温度计 | 0.03 K |
| 整体拓展不确定度 | <3.5% |
| p/MPa | x1 | p/MPa | x1 | p/MPa | x1 | p/MPa | x1 |
|---|---|---|---|---|---|---|---|
| 283.15 K | 293.15 K | 303.15 K | 313.15 K | ||||
| 0.123 | 0.107 | 0.130 | 0.092 | 0.135 | 0.082 | 0.141 | 0.075 |
| 0.321 | 0.236 | 0.337 | 0.211 | 0.353 | 0.191 | 0.368 | 0.174 |
| 0.544 | 0.347 | 0.572 | 0.315 | 0.598 | 0.289 | 0.624 | 0.266 |
| 0.769 | 0.446 | 0.809 | 0.412 | 0.848 | 0.384 | 0.885 | 0.358 |
| 0.990 | 0.530 | 1.046 | 0.489 | 1.097 | 0.461 | 1.146 | 0.434 |
| 1.211 | 0.599 | 1.282 | 0.559 | 1.347 | 0.530 | 1.410 | 0.502 |
| 1.423 | 0.658 | 1.512 | 0.615 | 1.595 | 0.589 | 1.667 | 0.563 |
| 323.15 K | 333.15 K | 343.15 K | |||||
| 0.146 | 0.068 | 0.152 | 0.061 | 0.157 | 0.056 | ||
| 0.382 | 0.159 | 0.396 | 0.148 | 0.410 | 0.137 | ||
| 0.649 | 0.246 | 0.673 | 0.231 | 0.697 | 0.217 | ||
| 0.921 | 0.336 | 0.956 | 0.318 | 0.992 | 0.298 | ||
| 1.194 | 0.412 | 1.242 | 0.389 | 1.288 | 0.371 | ||
| 1.471 | 0.478 | 1.532 | 0.454 | 1.590 | 0.436 | ||
| 1.743 | 0.533 | 1.817 | 0.508 | 1.888 | 0.492 | ||
表2 CO2在DiPEC5中的溶解度实验数据
Table 2 Experimental solubility data on CO₂ dissolved in DiPEC5
| p/MPa | x1 | p/MPa | x1 | p/MPa | x1 | p/MPa | x1 |
|---|---|---|---|---|---|---|---|
| 283.15 K | 293.15 K | 303.15 K | 313.15 K | ||||
| 0.123 | 0.107 | 0.130 | 0.092 | 0.135 | 0.082 | 0.141 | 0.075 |
| 0.321 | 0.236 | 0.337 | 0.211 | 0.353 | 0.191 | 0.368 | 0.174 |
| 0.544 | 0.347 | 0.572 | 0.315 | 0.598 | 0.289 | 0.624 | 0.266 |
| 0.769 | 0.446 | 0.809 | 0.412 | 0.848 | 0.384 | 0.885 | 0.358 |
| 0.990 | 0.530 | 1.046 | 0.489 | 1.097 | 0.461 | 1.146 | 0.434 |
| 1.211 | 0.599 | 1.282 | 0.559 | 1.347 | 0.530 | 1.410 | 0.502 |
| 1.423 | 0.658 | 1.512 | 0.615 | 1.595 | 0.589 | 1.667 | 0.563 |
| 323.15 K | 333.15 K | 343.15 K | |||||
| 0.146 | 0.068 | 0.152 | 0.061 | 0.157 | 0.056 | ||
| 0.382 | 0.159 | 0.396 | 0.148 | 0.410 | 0.137 | ||
| 0.649 | 0.246 | 0.673 | 0.231 | 0.697 | 0.217 | ||
| 0.921 | 0.336 | 0.956 | 0.318 | 0.992 | 0.298 | ||
| 1.194 | 0.412 | 1.242 | 0.389 | 1.288 | 0.371 | ||
| 1.471 | 0.478 | 1.532 | 0.454 | 1.590 | 0.436 | ||
| 1.743 | 0.533 | 1.817 | 0.508 | 1.888 | 0.492 | ||
| p/MPa | x1 | p/MPa | x1 | p/MPa | x1 | p/MPa | x1 |
|---|---|---|---|---|---|---|---|
| 283.15 K | 293.15 K | 303.15 K | 313.15 K | ||||
| 0.126 | 0.116 | 0.132 | 0.103 | 0.137 | 0.093 | 0.143 | 0.083 |
| 0.325 | 0.250 | 0.340 | 0.225 | 0.354 | 0.208 | 0.369 | 0.189 |
| 0.535 | 0.360 | 0.560 | 0.333 | 0.585 | 0.306 | 0.610 | 0.282 |
| 0.764 | 0.457 | 0.802 | 0.422 | 0.839 | 0.395 | 0.875 | 0.367 |
| 0.992 | 0.529 | 1.042 | 0.496 | 1.091 | 0.467 | 1.138 | 0.437 |
| 1.209 | 0.589 | 1.273 | 0.555 | 1.334 | 0.526 | 1.393 | 0.497 |
| 1.423 | 0.644 | 1.501 | 0.611 | 1.575 | 0.585 | 1.647 | 0.556 |
| 323.15 K | 333.15 K | 343.15 K | |||||
| 0.148 | 0.076 | 0.154 | 0.069 | 0.159 | 0.064 | ||
| 0.383 | 0.174 | 0.397 | 0.162 | 0.411 | 0.152 | ||
| 0.633 | 0.263 | 0.657 | 0.246 | 0.680 | 0.232 | ||
| 0.910 | 0.344 | 0.944 | 0.327 | 0.977 | 0.311 | ||
| 1.185 | 0.414 | 1.231 | 0.393 | 1.275 | 0.376 | ||
| 1.451 | 0.476 | 1.508 | 0.455 | 1.564 | 0.438 | ||
| 1.718 | 0.533 | 1.787 | 0.514 | 1.855 | 0.497 | ||
表3 CO2在DiPEC7中的溶解度实验数据
Table 3 Experimental solubility data on CO₂ dissolved in DiPEC7
| p/MPa | x1 | p/MPa | x1 | p/MPa | x1 | p/MPa | x1 |
|---|---|---|---|---|---|---|---|
| 283.15 K | 293.15 K | 303.15 K | 313.15 K | ||||
| 0.126 | 0.116 | 0.132 | 0.103 | 0.137 | 0.093 | 0.143 | 0.083 |
| 0.325 | 0.250 | 0.340 | 0.225 | 0.354 | 0.208 | 0.369 | 0.189 |
| 0.535 | 0.360 | 0.560 | 0.333 | 0.585 | 0.306 | 0.610 | 0.282 |
| 0.764 | 0.457 | 0.802 | 0.422 | 0.839 | 0.395 | 0.875 | 0.367 |
| 0.992 | 0.529 | 1.042 | 0.496 | 1.091 | 0.467 | 1.138 | 0.437 |
| 1.209 | 0.589 | 1.273 | 0.555 | 1.334 | 0.526 | 1.393 | 0.497 |
| 1.423 | 0.644 | 1.501 | 0.611 | 1.575 | 0.585 | 1.647 | 0.556 |
| 323.15 K | 333.15 K | 343.15 K | |||||
| 0.148 | 0.076 | 0.154 | 0.069 | 0.159 | 0.064 | ||
| 0.383 | 0.174 | 0.397 | 0.162 | 0.411 | 0.152 | ||
| 0.633 | 0.263 | 0.657 | 0.246 | 0.680 | 0.232 | ||
| 0.910 | 0.344 | 0.944 | 0.327 | 0.977 | 0.311 | ||
| 1.185 | 0.414 | 1.231 | 0.393 | 1.275 | 0.376 | ||
| 1.451 | 0.476 | 1.508 | 0.455 | 1.564 | 0.438 | ||
| 1.718 | 0.533 | 1.787 | 0.514 | 1.855 | 0.497 | ||
| 物质名称 | β0 | β1 | β2 | β3 |
|---|---|---|---|---|
| CO2 | 1.0005 | 0.43866 | -0.10498 | -0.6250 |
| DiPEC | 1.0 | 1.0 | 0.0 | 0.0 |
表4 公式中系数βk的值
Table 4 Values of coefficient βk in the formula
| 物质名称 | β0 | β1 | β2 | β3 |
|---|---|---|---|---|
| CO2 | 1.0005 | 0.43866 | -0.10498 | -0.6250 |
| DiPEC | 1.0 | 1.0 | 0.0 | 0.0 |
| 参数名称 | CO2+DiPEC5 | CO2+DiPEC7 |
|---|---|---|
| lij | 3.56✕10-2 | -1.15✕10-2 |
| lji | 3.55✕10-2 | -1.93✕10-2 |
| mij | -2.26✕10-2 | 3.66✕10-2 |
| τ0,ij | 4.77✕10-2 | 1.32✕10-1 |
| τ1,ij | 97.18 | 64.36 |
| τ2,ij | 2.694✕10-1 | 2.513✕10-3 |
| AARD/% | 1.73 | 2.25 |
| MARD/% | 7.90 | 7.82 |
表5 CO2与双季戊四醇酯二元作用参数关联结果
Table 5 Correlation results of the binary interaction parameters for CO2/dipentaerythritol ester mixture
| 参数名称 | CO2+DiPEC5 | CO2+DiPEC7 |
|---|---|---|
| lij | 3.56✕10-2 | -1.15✕10-2 |
| lji | 3.55✕10-2 | -1.93✕10-2 |
| mij | -2.26✕10-2 | 3.66✕10-2 |
| τ0,ij | 4.77✕10-2 | 1.32✕10-1 |
| τ1,ij | 97.18 | 64.36 |
| τ2,ij | 2.694✕10-1 | 2.513✕10-3 |
| AARD/% | 1.73 | 2.25 |
| MARD/% | 7.90 | 7.82 |
| [1] | Birmpili T. Montreal Protocol at 30: The governance structure, the evolution, and the Kigali Amendment[J]. Comptes Rendus Geoscience, 2018, 350(7): 425-431. |
| [2] | McLinden, M O, Seeton, C J, Pearson A. New refrigerants and system configurations for vapor-compression refrigeration[J]. Science, 2020, 370(6518): 791-796. |
| [3] | Basu M. Understanding fluoride and fluorocarbon toxicity: an overview[M]//Fluoride and Fluorocarbon Toxicity: Sources, Issues, and Remediation. Singapore: Springer Nature Singapore, 2024: 3-63. |
| [4] | 李敏霞, 詹浩淼, 王派, 等. 一种带引射器和经济器的CO2跨临界制冷系统[J]. 化工学报, 2021, 72(S1): 146-152. |
| Li M X, Zhan H M, Wang P, et al. A CO2 transcritical refrigeration system with ejector and economizer[J]. CIESC Journal, 2021, 72(S1): 146-152. | |
| [5] | 代宝民, 王启龙, 刘圣春, 等. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
| Dai, B M, Wang Q L, Liu S C, et al. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled[J]. CIESC Journal, 2023, 74(S1): 64-73. | |
| [6] | 张树铖, 殷翔, 宋昱龙, 等. 跨临界CO2汽车空调中润滑油影响特性研究进展[J]. 制冷学报, 2024, 45(2): 1-11. |
| Zhang S C, Yin X, Song Y L, et al. Research progress of influencing characteristics of lubricating oil in transcritical CO2 automotive air conditioner[J]. Journal of Refrigeration, 2024, 45(2): 1-11. | |
| [7] | 马一太, 管海清, 李敏霞, 等. CO2跨临界循环系统润滑油分析[J]. 天津大学学报, 2004, 37(9): 783-786. |
| Ma Y T, Guan H Q, Li M X, et al. Study of lubricant for CO2 trans-critical cycle system [J]. Journal of Tianjin University, 2004, 37(9): 783-786. | |
| [8] | Hinrichs J. Lubricant screening for CO2 automotive AC-systems, aspects from a compressor manufacturer point of view[C]//VDA. Proceedings of the VDA Alternate Refrigerant Winter Meeting. Saalfelden, Austria: VDA, 2004: 1-19. |
| [9] | Neto M A M, Barbosa J R. Experimental and theoretical analysis of CO2 absorption in polyolester oil using the PC-SAFT equation of state to account for nonideal effects[J]. Industrial & Engineering Chemistry Research, 2012, 51(2): 1027-1035. |
| [10] | Neto M A M, Barbosa J R. Phase and volumetric behaviour of mixtures of carbon dioxide (R-744) and synthetic lubricant oils[J]. The Journal of Supercritical Fluids, 2009, 50(1): 6-12. |
| [11] | García J, Youbi-Idrissi M, Bonjour J, et al. Experimental and PC-SAFT volumetric and phase behavior of carbon dioxide + PAG or POE lubricant systems[J]. The Journal of Supercritical Fluids, 2008, 47(1): 8-16. |
| [12] | Bobbo S, Pernechele F, Fedele L, et al. Solubility measurements and data correlation of carbon dioxide in pentaerythritol tetrahexanoate (PEC6)[J]. Journal of Chemical & Engineering Data, 2008, 53(11): 2581-2585. |
| [13] | Fedele L, Bobbo S, Scattolini M, et al. Solubility measurements and data correlation of carbon dioxide in pentaerythritol tetra (2-ethylbutanoate)(PEBE6)[J]. Journal of Chemical & Engineering Data, 2011, 56(1): 62-64. |
| [14] | Pernechele F, Bobbo S, Fedele L, et al. Solubility of carbon dioxide in pentaerythritol tetrabutyrate (PEC4) and comparison with other linear chained pentaerythritol tetraalkyl esters[J]. International Journal of Thermophysics, 2009, 30(4): 1144-1154. |
| [15] | Fedele L, Pernechele F, Bobbo S, et al. Solubility of carbon dioxide in pentaerythritol tetraoctanoate[J]. Fluid Phase Equilibria, 2009, 277(1): 55-60. |
| [16] | Fedele L, Bobbo S, Pernechele F, et al. Solubility temperature dependence and data correlation of carbon dioxide in pentaerythritol tetra-2-methylbutyrate[J]. Journal of Chemical & Engineering Data, 2009, 54(11): 3104-3107. |
| [17] | Bobbo S, Fedele L, Pernechele F, et al. Solubility measurements and correlation of carbon dioxide in pentaerythritol tetra-2-methylhexanoate. Comparison with other pentaerythritol esters[J]. Fluid Phase Equilibria, 2010, 290(1/2): 115-120. |
| [18] | Fandiño O, López E R, Lugo L, et al. Solubility of carbon dioxide in pentaerythritol ester oils. New data and modeling using the PC-SAFT model[J]. The Journal of Supercritical Fluids, 2010, 55(1): 62-70. |
| [19] | Fandiño O, López E R, Lugo L, et al. Solubility of carbon dioxide in two pentaerythritol ester oils between (283 and 333) K[J]. Journal of Chemical & Engineering Data, 2008, 53(8): 1854-1861. |
| [20] | Song Y C, Yang J L, Yue Y K, et al. Solubility study of carbon dioxide in pentaerythritol esters: Based on SAFT-VR-Mie equation of state[J]. Energy, 2024, 294: 130838. |
| [21] | 徐畅, 张楠, 胡芃. CO2混合工质的气液相平衡预测方法对比研究[J]. 计量学报, 2025, 46(4): 614-620. |
| Xu C, Zhang N, Hu P. A comparative study on the prediction methods of vapor-liquid equilibria of CO2-based mixtures[J]. Acta Metrologica Sinica, 2025, 46(4): 614-620. | |
| [22] | 吴子睿, 孙瑞, 石凌峰, 等. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
| Wu Z R, Sun R, Shi L F, et al. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures[J]. CIESC Journal, 2022, 73(4): 1483-1492. | |
| [23] | Lu C, Zhang Y H, Wang X P. Density, viscosity, and R1234yf solubility in dipentaerythritol esters[J]. Journal of Chemical & Engineering Data, 2025, 70(5): 2057-2067. |
| [24] | 胡岩松, 杨昭, 高磊, 等. R513A与PVE润滑油的溶解度及黏度研究[J]. 化工学报, 2025, 76(10): 5015-5023. |
| Hu Y S, Yang Z, Gao L, et al. Experimental study of solubility and viscosity of R513A and PVE lubricants [J]. CIESC Journal, 2025, 76(10): 5015-5023. | |
| [25] | 孙艳军, 邸高雷, 夏娟, 等. 不同冷冻润滑油对HFO1234yf溶解吸收特性的研究[J]. 化工学报, 2019, 70(S2): 25-30. |
| Sun Y J, Di G L, Xia J, et al. Investigation of solubility behavior between HFO1234yf and lubricants[J]. CIESC Journal, 2019, 70(S2): 25-30. | |
| [26] | Jia H Y, Wang X D, Wang X P. Vapor-liquid equilibrium of 3,3,3-trifluoropropene with mineral oils and POE lubricant between 283.15 K and 343.15 K[J]. International Journal of Refrigeration, 2023, 146: 375-380. |
| [27] | García J, Abou Naccoul R, Fernández J, et al. Vapor-pressure measurements and modeling of dipentaerythritol ester lubricants[J]. Industrial & Engineering Chemistry Research, 2011, 50(8): 4231-4237. |
| [28] | Jia X C, Du Y H, Wang X P. Selective absorption of ionic liquids in separating R-1243zf or R-161 from refrigerant blends[J]. The Journal of Chemical Thermodynamics, 2024, 196: 107307. |
| [29] | Lemmon E W, Bell I H, Huber M L, et al. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP[CP]. National Institute of Standards and Technology, Gaithersburg, 2019. |
| [30] | Fandiño O, López E R, Lugo L, et al. Compressed liquid densities of two dipentaerythritol esters[J]. Fluid Phase Equilibria, 2010, 296(1): 30-36. |
| [31] | Brocus J, Valtz A, Coquelet C, et al. Solubility measurements of refrigerants in polyolesters lubricants at temperature from 323.K to 383.K[J]. International Journal of Refrigeration, 2022, 134: 278-292. |
| [32] | 侯树鑫, 段远源, 王晓东. 氢氟烃+润滑油混合物气液相平衡模型[J]. 工程热物理学报, 2008, 29(6): 927-930. |
| Hou S X, Duan Y Y, Wang X D. Modeling vapor-liquid equilibria for hydrofluorocarbon + lubricant oil mixtures[J]. Journal of Engineering Thermophysics, 2008, 29(6): 927-930. | |
| [33] | Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203. |
| [34] | Yokozeki A. Solubility correlation and phase behaviors of carbon dioxide and lubricant oil mixtures[J]. Applied Energy, 2007, 84(2): 159-175. |
| [35] | Yokozeki A. Solubility of refrigerants in various lubricants[J]. International Journal of Thermophysics, 2001, 22(4): 1057-1071. |
| [36] | Hu J W, Wang R, Mao S D. Some useful expressions for deriving component fugacity coefficients from mixture fugacity coefficient[J]. Fluid Phase Equilibria, 2008, 268(1/2): 7-13. |
| [1] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [4] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [5] | 张建民, 何美贵, 贾万鑫, 赵静, 金万勤. 聚氧化乙烯/冠醚共混膜及其二氧化碳分离性能[J]. 化工学报, 2025, 76(9): 4862-4871. |
| [6] | 王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693. |
| [7] | 胡国祥, 朱忆魁, 龙华, 刘晓雯, 熊勤钢. 组分配比影响氯化胆碱-乳酸低共熔溶剂碱木质素溶解度的底层机理研究[J]. 化工学报, 2025, 76(9): 4449-4461. |
| [8] | 周运桃, 崔丽凤, 张杰, 于富红, 李新刚, 田野. Ga2O3调控CuCeO催化CO2加氢制甲醇的研究[J]. 化工学报, 2025, 76(8): 4042-4051. |
| [9] | 张荟钦, 赵泓竣, 付正军, 庄力, 董凯, 贾添智, 曹雪丽, 孙世鹏. 纳滤膜在离子型稀土浸出液提浓中的应用研究[J]. 化工学报, 2025, 76(8): 4095-4107. |
| [10] | 刘沁雯, 叶恒冰, 张逸伟, 朱法华, 钟文琪. 煤与禽类粪便混合燃料的加压富氧燃烧特性研究[J]. 化工学报, 2025, 76(7): 3487-3497. |
| [11] | 丁宏鑫, 干文翔, 赵雍洋, 贾润泽, 康子祺, 赵玉隆, 向勇. X65钢焊接接头在超临界CO2相及富H2O相中的腐蚀机理研究[J]. 化工学报, 2025, 76(7): 3426-3435. |
| [12] | 董泽明, 娄聚伟, 王楠, 陈良奇, 王江峰, 赵攀. 含余热回收的超临界压缩二氧化碳储能系统热力学特性研究[J]. 化工学报, 2025, 76(7): 3477-3486. |
| [13] | 范振宁, 梁海宁, 房茂立, 赫一凡, 于帅, 闫兴清, 安佳然, 乔帆帆, 喻健良. CO2管道不同相态节流放空特性研究与对比[J]. 化工学报, 2025, 76(7): 3742-3751. |
| [14] | 卢丽丽, 李晨, 陈柳云, 谢新玲, 罗轩, 苏通明, 秦祖赠, 纪红兵. BiOBr的形貌调控及其光催化CO2还原性能的研究[J]. 化工学报, 2025, 76(6): 2687-2700. |
| [15] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号