| [1] |
Straathof A J J, Wahl S A, Benjamin K R, et al. Grand research challenges for sustainable industrial biotechnology[J]. Trends in Biotechnology, 2019, 37(10): 1042-1050.
|
| [2] |
夏建业, 刘晶, 庄英萍. 人工智能时代发酵优化与放大技术的机遇与挑战[J]. 生物工程学报, 2022, 38(11): 4180-4199.
|
|
ia J Y X, Liu J, Zhuang Y P. Opportunities and challenges for fermentation optimization and scale-up technology in the artificial intelligence era[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4180-4199.
|
| [3] |
Fortuna L, Graziani S, Rizzo A, et al. Soft sensors for monitoring and control of industrial processes[M]. London: Springer London, 2007.
|
| [4] |
Jiang Y C, Yin S, Dong J W, et al. A review on soft sensors for monitoring, control, and optimization of industrial processes[J]. IEEE Sensors Journal, 2021, 21(11): 12868-12881.
|
| [5] |
Bajpai R K, Reuß M. A mechanistic model for penicillin production[J]. Journal of Chemical Technology and Biotechnology, 1980, 30(1): 332-344.
|
| [6] |
Fisher O J, Watson N J, Escrig J E, et al. Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems[J]. Computers & Chemical Engineering, 2020, 140: 106881.
|
| [7] |
Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176.
|
| [8] |
Li L H, Li N Q, Wang X, et al. Multi-output soft sensor modeling approach for penicillin fermentation process based on features of big data[J]. Expert Systems with Applications, 2023, 213: 119208.
|
| [9] |
Hua L, Zhang C, Sun W, et al. An evolutionary deep learning soft sensor model based on random forest feature selection technique for penicillin fermentation process[J]. ISA Transactions, 2023, 136: 139-151.
|
| [10] |
路仕钰, 杨立国. 基于ULSP-IFRF的间歇过程模态划分方法[J]. 北京化工大学学报(自然科学版), 2025, 52(3): 114-123.
|
|
Lu S Y, Yang L G. A mode partitioning method based on an undecimated lifting scheme packet-instantaneous frequence response function(ULSP-IFRF)for batch processes[J].Journal of Beijing University of Chemical Technology (Natural Science Edition), 2025, 52(3): 114-123.
|
| [11] |
Ye J J, Li J H, Su R, et al. DFGCN: Decoupled dual-flow dynamic graph convolutional network for multivariate time series forecasting[J]. Knowledge-Based Systems, 2025, 323: 113720.
|
| [12] |
Jia M W, Yao Y, Liu Y. Review on graph neural networks for process soft sensor development, fault diagnosis, and process monitoring[J]. Industrial & Engineering Chemistry Research, 2025, 64(17): 8543-8564.
|
| [13] |
Jia M W, Xu D Y, Yang T, et al. Graph convolutional network soft sensor for process quality prediction[J]. Journal of Process Control, 2023, 123: 12-25.
|
| [14] |
Bao D, Wang Y J, Li S H. Dynamic graph embedding PCA to extract spatio–temporal information for fault detection[J]. IEEE Transactions on Industrial Informatics, 2025, 21(2): 1714-1723.
|
| [15] |
Zhao H T. Dynamic graph embedding for fault detection[J]. Computers & Chemical Engineering, 2018, 117: 359-371.
|
| [16] |
Liu Y P, Huang Z G, Zhang F, et al. A decoupled network with variable graph convolution and temporal external attention for long-term multivariate time series forecasting[J]. Expert Systems with Applications, 2025, 271: 126584.
|
| [17] |
Liu Y, Jia M W, Xu D Y, et al. Physics-guided graph learning soft sensor for chemical processes[J]. Chemometrics and Intelligent Laboratory Systems, 2024, 249: 105131.
|
| [18] |
Jia M W, Yang C, Pan Z X, et al. Adversarial relationship graph learning soft sensor via negative information exclusion[J]. Journal of Process Control, 2025, 145: 103354.
|
| [19] |
Zhang M H, Li P, Xia Y L, et al. Labeling trick: A theory of using graph neural networks for multi-node representation learning[J]. Advances in Neural Information Processing Systems, 2021, 34: 9061-9073.
|
| [20] |
Karniadakis G E, Kevrekidis I G, Lu L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440.
|
| [21] |
Cui T Q, Bertalan T, Ndahiro N, et al. Data-driven and physics informed modeling of Chinese Hamster Ovary cell bioreactors[J]. Computers & Chemical Engineering, 2024, 183: 108594.
|
| [22] |
Zhu J L, Jia M W, Zhang Y, et al. Domain adaptation graph convolution network for quality inferring of batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2023, 243: 105028.
|
| [23] |
Cheng X Y, Yu Z H, Wang G, et al. Semi-supervised soft sensor method for fermentation processes based on physical monotonicity and variational autoencoders[J]. Engineering Applications of Artificial Intelligence, 2024, 137: 109065.
|
| [24] |
杨帆, 毛腾跃, 占伟. 基于PCA-Informer+模型的周期性甲烷菌体浓度预测研究[J]. 中南民族大学学报(自然科学版), 2025, 44(3) : 393-399.
|
|
Yang F., Mao T., Zhan W. Prediction of periodic methane concentration based on PCA-Informer+ [J]. Journal of South-Central Minzu University (Natural Science Edition), 2025, 44(3): 393-399.
|
| [25] |
Zhao S Q, Zhao Z G, Liu F. Modelling and parameter identification of penicillin fermentation using physics‐informed neural networks[J]. The Canadian Journal of Chemical Engineering, 2025, 103(5): 1965-1977.
|
| [26] |
Albino M, Gargalo C L, Nadal-Rey G, et al. Hybrid modeling for on-line fermentation optimization and scale-up: a review[J]. Processes, 2024, 12(8): 1635.
|
| [27] |
Li Q, Zhang J R, Wan H, et al. Physics-informed neural networks for multi-stage Koopman modeling of microbial fermentation processes[J]. Journal of Process Control, 2024, 143: 103315.
|
| [28] |
Zhang S, Tong H H, Xu J, et al. Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6(1): 11.
|
| [29] |
Nt H, Maehara T. Revisiting graph neural networks: All we have is low-pass filters[J]. arXiv preprint arXiv:, 2019.
|
| [30] |
Nie Y Q, Nguyen N H, Sinthong P, et al. A Time Series is Worth 64Words: Long-term Forecasting with Transformers[J]. arXiv preprint arXiv:, 2022.
|
| [31] |
Shojaie A, Fox E B. Granger causality: A review and recent advances[J]. Annual Review of Statistics and Its Application, 2022, 9(1): 289-319.
|
| [32] |
Levenspiel O. The Monod equation: a revisit and a generalization to product inhibition situations[J]. Biotechnology and Bioengineering, 1980, 22(8): 1671-1687.
|
| [33] |
Sun Y F, Yan X F. Spatial-Temporal relation inference Transformer combined with dynamic relationship and static causality for batch process modeling and the application of erythromycin fermentation[J]. Engineering Applications of Artificial Intelligence, 2025, 146: 110271.
|
| [34] |
Ren S J, Wu S L, Weng Q. Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships[J]. Bioresource Technology, 2023, 369: 128472.
|
| [35] |
Birol G, Ündey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565.
|