| 1 |
贾凤. 全球价值链视角下中国医药产业国际竞争力研究[D]. 昆明: 昆明理工大学, 2022.
|
|
Jia F. Research on the international competitiveness of China pharmaceutical industry: from the perspective of global value chain[D]. Kunming: Kunming University of Science and Technology, 2022.
|
| 2 |
梁作中. 基于溶质-溶剂物系分子力场的可控结晶行为及关键调控机理研究[D]. 北京: 北京化工大学, 2016.
|
|
Liang Z Z. Study on the controllable crystallization behaviour and key regulation mechanism based on solute-solvent system and molecular force field[D]. Beijing: Beijing University of Chemical Technology, 2016.
|
| 3 |
Lee E H. A practical guide to pharmaceutical polymorph screening & selection[J]. Asian Journal of Pharmaceutical Sciences, 2014, 9(4): 163-175.
|
| 4 |
Higashi K, Ueda K, Moribe K. Recent progress of structural study of polymorphic pharmaceutical drugs[J]. Advanced Drug Delivery Reviews, 2017, 117: 71-85.
|
| 5 |
Wang Y C, Lv J, Gao P Y, et al. Crystal structure prediction via efficient sampling of the potential energy surface[J]. Accounts of Chemical Research, 2022, 55(15): 2068-2076.
|
| 6 |
Guo M S, Sun X J, Chen J, et al. Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications[J]. Acta Pharmaceutica Sinica B, 2021, 11(8): 2537-2564.
|
| 7 |
Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective[J]. Advanced Drug Delivery Reviews, 2004, 56(3): 335-347.
|
| 8 |
Singh M K. Predicting lattice energy and structure of molecular crystals by first-principles method: role of dispersive interactions[J]. Journal of Crystal Growth, 2014, 396: 14-23.
|
| 9 |
Ropers J, Mosca M M, Anosova O, et al. Fast predictions of lattice energies by continuous isometry invariants of crystal structures[C]// Data Analytics and Management in Data Intensive Domains. Cham: Springer International Publishing, 2022: 178-192.
|
| 10 |
Nyman J, Day G M. Static and lattice vibrational energy differences between polymorphs[J]. CrystEngComm, 2015, 17(28): 5154-5165.
|
| 11 |
Geatches D, Rosbottom I, Marchese Robinson R L, et al. Off-the-shelf DFT-DISPersion methods: are they now “on-trend” for organic molecular crystals?[J]. The Journal of Chemical Physics, 2019, 151(4): 044106.
|
| 12 |
Feng S X, Li T L. Predicting lattice energy of organic crystals by density functional theory with empirically corrected dispersion energy[J]. Journal of Chemical Theory and Computation, 2006, 2(1): 149-156.
|
| 13 |
Fang T, Li W, Gu F W, et al. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods[J]. Journal of Chemical Theory and Computation, 2015, 11(1): 91-98.
|
| 14 |
Zheng Z Y, Zhao J J, Sun Y Y, et al. Structures and lattice energies of molecular crystals using density functional theory: assessment of a local atomic potential approach[J]. Chemical Physics Letters, 2012, 550: 94-98.
|
| 15 |
Mortazavi M, Hoja J, Aerts L, et al. Computational polymorph screening reveals late-appearing and poorly-soluble form of rotigotine[J]. Communications Chemistry, 2019, 2: 70.
|
| 16 |
Pan J. Scaling up system size in materials simulation[J]. Nature Computational Science, 2021, 1(2): 95.
|
| 17 |
Verma P, Truhlar D G. Status and challenges of density functional theory[J]. Trends in Chemistry, 2020, 2(4): 302-318.
|
| 18 |
Pugliese R, Regondi S, Marini R. Machine learning-based approach: global trends, research directions, and regulatory standpoints[J]. Data Science and Management, 2021, 4: 19-29.
|
| 19 |
Sarker I H. Machine learning: algorithms, real-world applications and research directions[J]. Computer Science, 2021, 2(3): 160.
|
| 20 |
Xu P C, Chen H M, Li M J, et al. New opportunity: machine learning for polymer materials design and discovery[J]. Advanced Theory and Simulations, 2022, 5(5): 2100565.
|
| 21 |
Huang G N, Guo Y N, Chen Y, et al. Application of machine learning in material synthesis and property prediction[J]. Materials, 2023, 16(17): 5977.
|
| 22 |
Xie T, Grossman J C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties[J]. Physical Review Letters, 2018, 120(14): 145301.
|
| 23 |
Cheng G J, Gong X G, Yin W J. Crystal structure prediction by combining graph network and optimization algorithm[J]. Nature Communications, 2022, 13(1): 1492.
|
| 24 |
Kusaba M, Liu C, Yoshida R. Crystal structure prediction with machine learning-based element substitution[J]. Computational Materials Science, 2022, 211: 111496.
|
| 25 |
Buchholz H K, Stein M. Accurate lattice energies of organic molecular crystals from periodic turbomole calculations[J]. Journal of Computational Chemistry, 2018, 39(19): 1335-1343.
|
| 26 |
赵慧茹. 量子化学方法在分子晶体计算中的应用[D]. 南京: 南京大学, 2015.
|
|
Zhao H R. The application of quantum chemical methods in calculation of molecular crystals[D]. Nanjing: Nanjing University, 2015.
|
| 27 |
王恋. 分子间氢键和色散力对含氧芳香族化合物激发态动力学的影响[D]. 武汉: 中国科学院大学(中国科学院武汉物理与数学研究所), 2020.
|
|
Wang L. Effect of intermolecular hydrogen bonding and dispersion interactions on excited state dynamics of oxygen-containing aromatic compounds[D]. Wuhan: University of Chinese Academy of Sciences(Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences), 2020.
|
| 28 |
Dolgonos G A, Boese A D. Adjusting dispersion parameters for the density-functional tight-binding description of molecular crystals[J]. Chemical Physics Letters, 2019, 718: 7-11.
|
| 29 |
Wei J, Chu X, Sun X Y, et al. Machine learning in materials science[J]. InfoMat, 2019, 1(3): 338-358.
|
| 30 |
Kaundinya P R, Choudhary K, Kalidindi S R. Machine learning approaches for feature engineering of the crystal structure: application to the prediction of the formation energy of cubic compounds[J]. Physical Review Materials, 2021, 5(6): 063802.
|
| 31 |
Feng S, Zhou H Y, Dong H B. Application of deep transfer learning to predicting crystal structures of inorganic substances[J]. Computational Materials Science, 2021, 195: 110476.
|
| 32 |
Ong S P, Richards W D, Jain A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis[J]. Computational Materials Science, 2013, 68: 314-319.
|
| 33 |
Başar M S, Küçükönder H. Measuring the correlation between commercial and economic states of countries (B2G relations) and the E-government readiness index by using neural networks[J]. Open Journal of Business and Management, 2014, 2(2): 110-115.
|