化工学报 ›› 2019, Vol. 70 ›› Issue (5): 2007-2015.DOI: 10.11949/j.issn.0438-1157.20181292
收稿日期:
2018-11-02
修回日期:
2019-01-29
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
周红军
作者简介:
<named-content content-type="corresp-name">邱松发</named-content>(1994—),男,硕士研究生,<email>501946228@qq.com</email>|周红军(1975—),男,教授,<email>hongjunzhou@163.com</email>
基金资助:
Songfa QIU(),Binhua XU,Guanquan LIN,Xinhua ZHOU,Huayao CHEN,Hongjun ZHOU()
Received:
2018-11-02
Revised:
2019-01-29
Online:
2019-05-05
Published:
2019-05-05
Contact:
Hongjun ZHOU
摘要:
以羧甲基纤维素钠(CMC)为基材,甲基丙烯酸甲酯(MMA)和二甲基二烯丙基氯化铵(DMDAAC)为改性单体,通过乳液聚合制备了CMC-g-P(MMA-DMDAAC)共聚物,采用自组装方法负载2,4-二氯苯氧乙酸(2,4-D)得到2,4-D/CMC-g-P(MMA-DMDAAC)纳米药物缓释体系。利用傅里叶红外光谱(FTIR)、差示扫描量热法(DSC)、热重分析(TGA)、扫描电镜(SEM)、粒度分析仪对其结构和形貌进行表征,并探究其载药性能和缓释性能。结果表明,2,4-D/CMC-g-P(MMA-DMDAAC)载药粒子呈笼状结构,粒度分布为160~425 nm;其载药率随着CMC∶MMA∶DMDAAC的摩尔比增大而提高,最高可达40.8%;其药物累计释放率随CMC∶MMA∶DMDAAC的摩尔比增大而降低,其释放行为符合Weibull模型,遵循Fick扩散机理。
中图分类号:
邱松发, 许斌华, 林冠权, 周新华, 陈铧耀, 周红军. 2,4-D/CMC接枝物纳米粒子的制备与缓释性能研究[J]. 化工学报, 2019, 70(5): 2007-2015.
Songfa QIU, Binhua XU, Guanquan LIN, Xinhua ZHOU, Huayao CHEN, Hongjun ZHOU. Preparation and sustained release performance of 2,4-D/grafted CMC nanoparticles[J]. CIESC Journal, 2019, 70(5): 2007-2015.
图2 CMC(a)、CMC-g-P(MMA-DMDAAC)(b)、2,4-D/CMC-g-P(MMA-DMDAAC)(c)和2,4-D(d)的红外光谱图
Fig.2 Infrared spectra of CMC(a), CMC-g-P(MMA-DMDAAC)(b), 2,4-D/CMC-g-P(MMA-DMDAAC)(c) and 2,4-D(d)
CMC∶MMA∶DMDAAC (molar ratio) | Before drug loading | After drug loading | ||
---|---|---|---|---|
Average particle size/nm | Zeta potential/mV | Average particle size/nm | Zeta potential/mV | |
1∶1∶1 | 104.35 | ?15.33 | 160.06 | ?13.75 |
1∶2∶2 | 145.40 | ?19.21 | 141.46 | ?4.42 |
1∶4∶4 | 283.49 | ?11.65 | 264.75 | 4.60 |
1∶6∶6 | 315.94 | 2.12 | 286.90 | 11.37 |
1∶8∶8 | 338.88 | 13.20 | 328.10 | 16.48 |
1∶12∶12 | 532.84 | 20.32 | 425.97 | 24.67 |
表1 不同CMC∶MMA∶DMDAAC载药前后的平均粒径与电势
Table 1 Mean particle size and potential before and after drug loading with different molar ratios of CMC∶MMA∶DMDAAC
CMC∶MMA∶DMDAAC (molar ratio) | Before drug loading | After drug loading | ||
---|---|---|---|---|
Average particle size/nm | Zeta potential/mV | Average particle size/nm | Zeta potential/mV | |
1∶1∶1 | 104.35 | ?15.33 | 160.06 | ?13.75 |
1∶2∶2 | 145.40 | ?19.21 | 141.46 | ?4.42 |
1∶4∶4 | 283.49 | ?11.65 | 264.75 | 4.60 |
1∶6∶6 | 315.94 | 2.12 | 286.90 | 11.37 |
1∶8∶8 | 338.88 | 13.20 | 328.10 | 16.48 |
1∶12∶12 | 532.84 | 20.32 | 425.97 | 24.67 |
1∶6∶6 emulsion dosage/ml | Encapsulation efficiency/% | Drug loading rate/% |
---|---|---|
0.5 | 3.69 | 22.5 |
1 | 12.33 | 32.65 |
1.5 | 19.53 | 33.86 |
2 | 26.72 | 34.44 |
3 | 27.44 | 26.45 |
4 | 28.88 | 22.11 |
5 | 28.16 | 18.13 |
6 | 28.88 | 15.92 |
表2 载体用量对包封率与载药率的影响
Table 2 Effect of carrier dosage on encapsulation efficiency and drug loading rate
1∶6∶6 emulsion dosage/ml | Encapsulation efficiency/% | Drug loading rate/% |
---|---|---|
0.5 | 3.69 | 22.5 |
1 | 12.33 | 32.65 |
1.5 | 19.53 | 33.86 |
2 | 26.72 | 34.44 |
3 | 27.44 | 26.45 |
4 | 28.88 | 22.11 |
5 | 28.16 | 18.13 |
6 | 28.88 | 15.92 |
CMC∶MMA∶DMDAAC(molar ratio) | Encapsulation efficiency/% | Drug loading rate/% |
---|---|---|
1∶1∶1 | 5.85 | 19.30 |
1∶2∶2 | 9.45 | 23.37 |
1∶4∶4 | 19.53 | 32.93 |
1∶6∶6 | 29.60 | 36.79 |
1∶8∶8 | 38.24 | 40.80 |
表3 不同载体的包封率与载药率
Table 3 Encapsulation efficiency and drug loading rate of different carriers
CMC∶MMA∶DMDAAC(molar ratio) | Encapsulation efficiency/% | Drug loading rate/% |
---|---|---|
1∶1∶1 | 5.85 | 19.30 |
1∶2∶2 | 9.45 | 23.37 |
1∶4∶4 | 19.53 | 32.93 |
1∶6∶6 | 29.60 | 36.79 |
1∶8∶8 | 38.24 | 40.80 |
Sample | Zero-order | First-order | Weibull | |||
---|---|---|---|---|---|---|
R 2 | K 0 | R 2 | K 1 | R 2 | b | |
1∶2∶2 | 0.2042 | 0.5518 | 0.9247 | 1.0093 | 0.9244 | 0.28474 |
1∶6∶6 | 0.2241 | 0.4795 | 0.9164 | 0.8190 | 0.9053 | 0.23555 |
1∶12∶12 | 0.2593 | 0.4075 | 0.9107 | 0.6478 | 0.9012 | 0.21463 |
表4 载药纳米粒子药物释放拟合结果
Table 4 Fitting results for release curves of 2,4-D/CMC-g-P(MMA-DMDAAC)
Sample | Zero-order | First-order | Weibull | |||
---|---|---|---|---|---|---|
R 2 | K 0 | R 2 | K 1 | R 2 | b | |
1∶2∶2 | 0.2042 | 0.5518 | 0.9247 | 1.0093 | 0.9244 | 0.28474 |
1∶6∶6 | 0.2241 | 0.4795 | 0.9164 | 0.8190 | 0.9053 | 0.23555 |
1∶12∶12 | 0.2593 | 0.4075 | 0.9107 | 0.6478 | 0.9012 | 0.21463 |
1 | Foo K Y , Hameed B H . Detoxification of pesticide waste via activated carbon adsorption process[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 1-11. |
2 | Aouada F A , de Moura M R , Orts W J , et al . Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide[J]. Journal of Materials Science, 2010, 45(18): 4977-4985. |
3 | Shegokar R , Müller R H . Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives[J]. International Journal of Pharmaceutics, 2010, 399(1/2): 129-139. |
4 | 林粤顺, 周红军, 周新华, 等 . pH响应性PAA/毒死蜱/氨基化介孔硅缓释体系的制备与性能[J]. 化工学报, 2016, 67(10): 4500-4507. |
Lin Y S , Zhou H J , Zhou X H , et al . Preparation and properties of pH-responsive control release system of PAA/chlorpyrifos/amino functionalized mesoporoussilica[J]. CIESC Journal , 2016, 67(10): 4500-4507. | |
5 | Patel S , Bajpai J , Saini R , et al . Sustained release of pesticide (cypermethrin) from nanocarriers: an effective technique for environmental and crop protection[J]. Process Safety and Environmental Protection, 2018, 117: 315-325. |
6 | Sun Y , Ma Y , Fang G , et al . Controlled pesticide release from porous composite hydrogels based on lignin and polyacrylic acid[J]. BioResources, 2015, 11(1): 2361-2371. |
7 | Liu Z , Qie R , Li W , et al . Preparation of avermectin microcapsules with anti-photodegradation and slow-release by the assembly of lignin derivatives[J]. New J. Chem., 2017, 41(8): 3190-3195. |
8 | Xiang Y , Han J , Zhang G , et al . Efficient synthesis of starch-regulated porous calcium carbonate microspheres as a carrier for slow-release herbicide[J]. ACS Sustainable Chem. Eng., 2018, 3(6): 3649-3658. |
9 | Wang Y , Wang A , Wang C , et al . Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants[J]. Scientific Reports, 2017, 7(1): 12761. |
10 | Yusoff S N M , Kamari A , Aljafree N F A . A review of materials used as carrier agents in pesticide formulations[J]. International Journal of Environmental Science and Technology, 2016, 13(12): 2977-2994. |
11 | Müller R H , Gohla S , Keck C M . State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78(1): 1-9. |
12 | Zhang M R , Xu H , Lang M D . Synthesize of carboxymethyl chitosan-graft-polycaprolactone (CMCS-g-PCL) and the preparation of micelles[J]. Advanced Materials Research, 2015, 1120/1121: 909-914. |
13 | Raafat A I , Eid M , El-Arnaouty M B . Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 283: 71-76. |
14 | Qiu L , Shao Z , Yang M , et al . Study on effects of carboxymethyl cellulose lithium (CMC-Li) synthesis and electrospinning on high-rate lithium ion batteries[J]. Cellulose, 2014, 21(1): 615-626. |
15 | Benslimane A , Bahlouli I M , Bekkour K , et al . Thermal gelation properties of carboxymethyl cellulose and bentonite-carboxymethyl cellulose dispersions: rheological considerations[J]. Applied Clay Science, 2016, 132/133: 702-710. |
16 | Lohani A , Singh G , Bhattacharya S , et al . Tailored-interpenetrating polymer network beads of κ-carrageenan and sodium carboxymethyl cellulose for controlled drug delivery[J]. Journal of Drug Delivery Science and Technology, 2015, 31: 53-64. |
17 | Mansouri S , Khiari R , Bettaieb F , et al . Characterization of composite materials based on LDPE loaded with agricultural tunisian waste[J]. Polymer Composites, 2015, 36(5): 817-824. |
18 | 南鹏林, 张维磊, 赵彦生, 等 . 改性聚天冬氨酸 /聚丙烯酸 /羧甲基纤维素复合高吸水性树脂的制备及其性能[J]. 精细化工, 2017, 34(7): 751-759. |
Nan P L , Zhang W L , Zhao Y S , et al . Synthesis and properties of modified poly(aspartic acid)/poly(acrylic acid)/carboxymethyl cellulose composite superabsorbent resins[J]. Fine Chemicals, 2017, 34(7): 751-759. | |
19 | Li W , Zuo P , Xu D , et al . Tunable adsorption properties of bentonite/carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) composites towards anionic dyes[J]. Chemical Engineering Research and Design, 2017, 124: 260-270. |
20 | Chen H , Lin G , Zhou H , et al . Preparation of avermectin/grafted CMC nanoparticles and their sustained release performance[J]. Journal of Polymers and the Environment, 2018, 26(7): 2945-2953. |
21 | Chen H , Lin Y , Zhou H , et al . Synthesis and characterization of chlorpyrifos/copper(Ⅱ) schiff base mesoporous silica with pH sensitivity for pesticide sustained release[J]. Journal of Agricultural and Food Chemistry, 2016, 64(43): 8095-8102. |
22 | Mahdavinia G , Afzali A , Etemadi H , et al . Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose-g-polyacrylamide/montmorillonite for colon targeted drug deliver[J]. Nanomedicine Research Journal, 2017, 2(2): 111-122. |
23 | Mantilla A , Tzompantzi F , Fernández J L , et al . Photodegradation of 2,4-dichlorophenoxyacetic acid using ZnAlFe layered double hydroxides as photocatalysts[J]. Catalysis Today, 2009, 148(1/2): 119-123. |
24 | 王海洋, 尹国强, 冯光柱, 等 . 羽毛角蛋白/CMC复合膜的制备及结构和性能[J]. 材料导报, 2014, 28(8): 67-71. |
Wang H Y , Yin G Q , Feng G Z , et al . Preparation, structure and properties of blend films of feather keratin and sodium carboxy methyl cellulose[J]. Materials Review, 2014, 28(8): 67-71. | |
25 | Pourjavadi A , Ghasemzadeh H , Mojahedi F . Swelling properties of CMC-g-poly (AAm-co-AMPS) superabsorbent hydrogel[J]. Journal of Applied Polymer Science, 2009, 113(6): 3442-3449. |
26 | Tan Q , Jiang R , Xu M , et al . Nanosized sustained-release pyridostigmine bromide microcapsules: process optimization and evaluation of characteristics[J]. International Journal of Nanomedicine, 2013, 8: 737-745. |
27 | Costa P , Sousa Lobo J M . Modeling and comparison of dissolution profiles[J]. European Journal of Pharmaceutical Sciences, 2001, 13(2): 123-133. |
28 | Costa F O , Sousa J J S , Pais A A C C , et al . Comparison of dissolution profiles of Ibuprofen pellets[J]. Journal of Controlled Release, 2003, 89(2): 199-212. |
29 | Guo W , Quan P , Fang L , et al . Sustained release donepezil loaded PLGA microspheres for injection: preparation, in vitro and in vivo study[J]. Asian Journal of Pharmaceutical Sciences, 2015, 10(5): 405-414. |
30 | Lagorce-Tachon A , Karbowiak T , Simon J , et al . Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?[J]. Journal of Agricultural and Food Chemistry, 2014, 62(37): 9180-9185. |
[1] | 王德宏, 孙琳, 罗雄麟. 海水淡化系统多效蒸发传热温差全周期渐变优化分析[J]. 化工学报, 2022, 73(12): 5469-5482. |
[2] | 周红军, 林粤顺, 李舒静, 徐华, 陈铧耀, 周新华. 席夫碱锌改性介孔硅对毒死蜱的吸附与缓释[J]. 化工学报, 2018, 69(5): 2272-2281. |
[3] | 李婷婷, 赵乐乐, 郑子良, 王振军, 张瑞平. 右旋布洛芬/尿素改性蒙脱土复合物的制备及体外释药性能[J]. 化工学报, 2017, 68(9): 3631-3637. |
[4] | 周枫, 李智宇, 李根, 江涛, 者为, 黄艳, 卢真保, 李忠. 茴香醚在葡萄糖基多孔碳材料上缓释机理[J]. 化工学报, 2017, 68(12): 4625-4632. |
[5] | 林粤顺, 周红军, 周新华, 龚圣, 徐华, 陈铧耀. pH响应性PAA/毒死蜱/氨基化介孔硅缓释体系的制备与性能[J]. 化工学报, 2016, 67(10): 4500-4507. |
[6] | 冯颖, 王珏程, 郑龙行, 苏辰长, 张建伟. 羧甲基纤维素钠螯合Cu(Ⅱ)的稳定常数测定及螯合效果分析[J]. 化工学报, 2015, 66(11): 4501-4508. |
[7] | 吴洁, 丁师杰, 陈静, 蒋金龙, 王军军. 酸化凹凸棒石/海藻酸复合材料的制备及其缓释性能[J]. 化工学报, 2014, 65(11): 4627-4632. |
[8] | 蒋姗,李夏倩,缪阳,俞强. 反相乳液共聚合制备高分子絮凝剂工艺及产物性能[J]. 化工进展, 2014, 33(07): 1816-1821. |
[9] | 吴文果1,2,刘伟1,王士斌1,2,刘源岗1,2,陈爱政1,2. 海藻酸钙/聚精氨酸微胶囊的载药和缓释性能[J]. 化工进展, 2014, 33(05): 1271-1275. |
[10] | 殷其亮1,李筱琴1,2,李 瑛1,肖 阳1. 羧甲基纤维素钠改性零价铁在石英砂中的迁移能力[J]. 化工进展, 2013, 32(07): 1598-1603. |
[11] | 刘源岗1,2,郑琪瑶1,王士斌1,2. 盐酸米托蒽醌多囊脂质体的制备工艺优化及性能[J]. 化工进展, 2013, 32(06): 1395-1400. |
[12] | 阚文涛1,李 欣2,罗顺忠1,胡 睿1. 印迹水凝胶作为氟尿嘧啶载体的药物缓释性能[J]. 化工进展, 2013, 32(03): 627-633. |
[13] | 徐婷婷,李治方,吴 洁,陈 静. 缓释铜的凹土/海藻酸钠复合微球的制备及性能测试[J]. 化工进展, 2013, 32(02): 410-413. |
[14] | 魏钊华, 李光吉. 包埋尿素的葡甘聚糖/黄原胶复合凝胶的制备及其释放特性 [J]. 化工学报, 2011, 62(1): 255-261. |
[15] | 李 鹤,迟德富,宇 佳,关桦楠. 复凝聚法制备昆虫蜕皮激素微胶囊及其性能 [J]. CIESC Journal, 2010, 29(9): 1730-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||