化工学报 ›› 2019, Vol. 70 ›› Issue (5): 2016-2024.DOI: 10.11949/j.issn.0438-1157.20190018
• 材料化学工程与纳米技术 • 上一篇
刘亚敏1,2(),彭蕾1,苏凤英1,王湘湘1,黄艺真1,林在春1,喻晓静1,裴义山1
收稿日期:
2019-01-07
修回日期:
2019-03-01
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
刘亚敏
作者简介:
刘亚敏(1972—),男,博士,副教授,<email>mingjing2000@126.com</email>
基金资助:
Yamin LIU1,2(),Lei PENG1,Fengying SU1,Xiangxiang WANG1,Yizhen HUANG1,Zaichun LIN1,Xiaojing YU1,Yishan PEI1
Received:
2019-01-07
Revised:
2019-03-01
Online:
2019-05-05
Published:
2019-05-05
Contact:
Yamin LIU
摘要:
以乙二胺(EDA)、二乙烯三胺(DETA)、四乙烯五胺(TEPA)、聚乙烯亚胺(PEI)等多胺基化合物为表面改性剂,氧化石墨烯(GO)材料为载体,采用嫁接法辅以超声处理制备了表面胺基功能化多孔吸附材料,用于CO2气体的吸附捕集。所制备的多孔吸附材料孔径约为1.35~4.34 nm,比表面积约为98.032~210.465 m2/g。制备的四种吸附材料中,以PEI功能化吸附材料对CO2的吸附容量最大,70℃下达到了1.5 mmol/g,且经过20次循环吸附/脱附实验后,其CO2吸附量基本不变。吸附过程的吸附等温线线型为Ⅰ型优惠型,另外吸附实验数据与Avrami模型模拟结果符合性较好。
中图分类号:
刘亚敏, 彭蕾, 苏凤英, 王湘湘, 黄艺真, 林在春, 喻晓静, 裴义山. 多孔胺基化氧化石墨烯基材料对CO2的吸附性能研究[J]. 化工学报, 2019, 70(5): 2016-2024.
Yamin LIU, Lei PENG, Fengying SU, Xiangxiang WANG, Yizhen HUANG, Zaichun LIN, Xiaojing YU, Yishan PEI. Study of CO2 adsorption on amine functionalized graphene oxide porous materials[J]. CIESC Journal, 2019, 70(5): 2016-2024.
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径(BJH)/nm |
---|---|---|---|
GO | 289.028 | 0.046 | 1.91 |
EDA-GO | 98.032 | 0.016 | 4.34 |
DETA-GO | 210.465 | 0.043 | 1.73 |
TEPA-GO | 194.484 | 0.042 | 1.69 |
PEI-GO | 162.042 | 0.031 | 1.35 |
表1 GO及EDA-GO、DETA、TEPA-GO、PEI-GO的结构参数
Table 1 Textural properties of GO, EDA-GO, DETA, TEPA-GO and PEI-GO
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径(BJH)/nm |
---|---|---|---|
GO | 289.028 | 0.046 | 1.91 |
EDA-GO | 98.032 | 0.016 | 4.34 |
DETA-GO | 210.465 | 0.043 | 1.73 |
TEPA-GO | 194.484 | 0.042 | 1.69 |
PEI-GO | 162.042 | 0.031 | 1.35 |
Sample | C/%(mass) | N/%(mass) | O/%(mass) |
---|---|---|---|
GO | 62.17 | 0.08 | 20.24 |
EDA-GO | 59.37 | 2.34 | 18.06 |
DETA-GO | 53.52 | 4.18 | 14.84 |
TEPA-GO | 52.68 | 4.84 | 14.66 |
PEI-GO | 51.06 | 5.42 | 13.08 |
表2 GO和胺基功能化GO样品元素分析结果
Table 2 Elemental analysis of GO and amine functionalized GO
Sample | C/%(mass) | N/%(mass) | O/%(mass) |
---|---|---|---|
GO | 62.17 | 0.08 | 20.24 |
EDA-GO | 59.37 | 2.34 | 18.06 |
DETA-GO | 53.52 | 4.18 | 14.84 |
TEPA-GO | 52.68 | 4.84 | 14.66 |
PEI-GO | 51.06 | 5.42 | 13.08 |
Sample | Adsorption capacity/(mmol CO2/g) | ||
---|---|---|---|
30℃ | 50℃ | 70℃ | |
PEI-GO | 0.3 | 1.2 | 1.5 |
TEPA-GO | 0.3 | 0.9 | 1.3 |
DETA-GO | 0.3 | 0.8 | 1.2 |
EDA-GO | 0.1 | 0.5 | 0.7 |
GO | 0.2 | 0.1 | 0 |
表3 样品的CO2吸附量
Table 3 Adsorption capacity of samples
Sample | Adsorption capacity/(mmol CO2/g) | ||
---|---|---|---|
30℃ | 50℃ | 70℃ | |
PEI-GO | 0.3 | 1.2 | 1.5 |
TEPA-GO | 0.3 | 0.9 | 1.3 |
DETA-GO | 0.3 | 0.8 | 1.2 |
EDA-GO | 0.1 | 0.5 | 0.7 |
GO | 0.2 | 0.1 | 0 |
T/℃ | q m /(mmol/g) | k L/min?1 | R 2 |
---|---|---|---|
70 | 1.8523 | 0.3737 | 0.997 |
50 | 1.59147 | 0.2257 | 0.988 |
30 | 0.50101 | 0.15023 | 0.979 |
表4 Langmuir方程对实验数据的拟合结果
Table 4 Constants of Langmuir model for CO2 adsorption on PEI-GO
T/℃ | q m /(mmol/g) | k L/min?1 | R 2 |
---|---|---|---|
70 | 1.8523 | 0.3737 | 0.997 |
50 | 1.59147 | 0.2257 | 0.988 |
30 | 0.50101 | 0.15023 | 0.979 |
T/℃ | q e/(mmol/g) | k a/min-1 | n | R 2 | q a/(mmol/g) |
---|---|---|---|---|---|
30 | 0.35096 | 0.46997 | 1.12044 | 0.998 | 0.3 |
50 | 1.28668 | 0.27768 | 1.28763 | 0.998 | 1.2 |
70 | 1.61234 | 0.272 | 1.05424 | 0.999 | 1.5 |
表5 Avrami模型模拟结果参数
Table 5 Constants of Avrami model for CO2 adsorption on PEI-GO
T/℃ | q e/(mmol/g) | k a/min-1 | n | R 2 | q a/(mmol/g) |
---|---|---|---|---|---|
30 | 0.35096 | 0.46997 | 1.12044 | 0.998 | 0.3 |
50 | 1.28668 | 0.27768 | 1.28763 | 0.998 | 1.2 |
70 | 1.61234 | 0.272 | 1.05424 | 0.999 | 1.5 |
1 | Boothandford M E , Abanades J C , Anthony E J , et al . Carbon capture and storage update[J]. Energy & Environmental Science, 2014, 7(1): 130-189. |
2 | Dowell N M , Fennell P S , Shah N , et al . The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017, 7(4): 243-249. |
3 | Yuan W , Li Z , Alexander O , et al . A review of post-combustion CO2 capture technologies from coal-fired power plants[J]. Energy Procedia, 2017, 114: 650-665. |
4 | Mohamed K , Yann L M , Olivier A , et al . Up-to-date CO2 capture in thermal power plants[J]. Energy Procedia, 2017, 114: 95-103. |
5 | Chiang Y C , Juang R S . Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 214-234. |
6 | Sanz-Pérez E S , Dantas T C M , Arencibia A , et al . Reuse and recycling of amine-functionalized silica materials for CO2 adsorption[J]. Chemical Engineering Journal, 2017, 308: 1021-1033. |
7 | Creamer A E , Gao B . Carbon-based adsorbents for post-combustion CO2 capture: a critical review[J]. Environmental Science & Technology, 2016, 50(14): 7276. |
8 | Kishor R , Ghoshal A K . Amine-modified mesoporous silica for CO2 adsorption: the role of structural parameters[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 6078-6087. |
9 | 张文静, 吴烨, 蔡天意, 等 . 胺基CO2固体吸附剂脱碳特性及SO2的影响[J]. 化工学报, 2018, 69(4): 1586-1594. |
Zhang W J , Wu Y , Cai T Y , et al . Effect of SO2 on CO2 sorption characteristics using solid amine CO2 sorbent[J]. CIESC Journal, 2018, 69(4): 1586-1594. | |
10 | Chen C , Lee Y R , Ahn W S . CO2 adsorption over metal-organic frameworks: a mini review[J]. Journal of Nanoscience & Nanotechnology, 2016, 16(5): 4291. |
11 | 陈敏玲, 王兴杰, 肖静, 等 . 淀粉基多孔碳材料的制备及其吸附CO2/CH4性能[J]. 化工学报, 2018, 69(1): 455-463. |
Chen M L , Wang X J , Xiao J , et al . Preparation of porous carbon material from starch and its performance for separation of CO2/CH4 [J]. CIESC Journal, 2018, 69(1): 455-463. | |
12 | 谢丹妍, 邢华斌, 张治国, 等 . 多孔氢键金属-有机框架材料对乙炔和二氧化碳的吸附分离[J]. 化工学报, 2017, 68(1): 154-162. |
Xie D Y , Xing H B , Zhang Z G , et al . Porous hydrogen-bonded organometallic frameworks for adsorption separation of acetylene and carbon dioxide[J]. CIESC Journal, 2017, 68(1): 154-162. | |
13 | Balasubramanian R , Chowdhury S . Recent advances and progress in the development of graphene-based adsorbents for CO2 capture[J]. J. Mater. Chem. A, 2015, 3(44): 21968-21989. |
14 | Chisholm M F , Lee J , Guo J , et al . Functionalization of graphene[J]. Microscopy & Microanalysis, 2015, 21(S3): 737-738. |
15 | Gadipelli S , Zheng X G . Graphene-based materials: synthesis and gas sorption, storage and separation[J]. Progress in Materials Science, 2015, 69(69): 1-60. |
16 | Balandin A A , Ghosh S , Bao W , et al . Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902. |
17 | Ghosh A , Subrahmanyam K S , Krishna K S , et al . Uptake of H2 and CO2 by graphene[J]. Journal of Physical Chemistry C, 2008, 112(40): 15704-15707. |
18 | Mishra A K , Ramaprabhu S . Carbon dioxide adsorption in graphene sheets[J]. AIP Advances, 2011, 1(3): 321. |
19 | Hong S M , Kim S H , Lee K B . Adsorption of carbon dioxide on 3-aminopropyl-triethoxysilane modified graphite oxide[J]. Energy & Fuels, 2013, 27(6): 3358-3363. |
20 | Sui Z Y , Cui Y , Zhu J H , et al . Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents [J]. ACS Applied Materials & Interfaces, 2013, 5(18): 9172. |
21 | Chowdhury S , Parshetti G K , Balasubramanian R . Post-combustion CO2 capture using mesoporous TiO2 /graphene oxide nanocomposites[J]. Chemical Engineering Journal, 2015, 263: 374-384. |
22 | Marcano D C , Kosynkin D V , Berlin J M , et al . Improved synthesis of graphene oxide [J]. ACS Nano, 2010, 4 (8): 4806-4814. |
23 | Ferrari A C , Basko D M . Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246. |
24 | Ling X , Zhang J . Interference phenomenon in graphene-enhanced Raman scattering[J]. Journal of Physical Chemistry C, 2011, 115(6): 2835-2840. |
25 | Gupta A , Chen G , Joshi P , et al . Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters, 2006, 6(12): 2667-2673. |
26 | Graf D , Molitor F , Ensslin K , et al . Spatially resolved Raman spectroscopy of single- and few-layer graphene[J]. Nano Letters, 2006, 7(2): 238. |
27 | Liu J , Jeong H , Liu J , et al . Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents[J]. Carbon, 2010, 48(8): 2282-2289. |
28 | Kumar A S K , Rajesh N . Exploring the interesting interaction between graphene oxide, Aliquat-336 (a room temperature ionic liquid) and chromium(Ⅵ) for wastewater treatment[J]. RSC Advances, 2013, 3(8): 2697-2709. |
29 | Fan L , Luo C , Li X , et al . Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue[J]. Journal of Hazardous Materials, 2012, S215/S216(10): 272-279. |
30 | Zhao Y , Ding H , Zhong Q . Preparation and characterization of aminated graphite oxide for CO2 capture[J]. Applied Surface Science, 2012, 258(10): 4301-4307. |
31 | 尚玉, 张东, 刘艳云, 等 . 电化学还原法制备石墨烯:制备与表征[J]. 功能材料, 2015, 46(16): 16009-16015. |
Shang Y , Zhang D , Liu Y Y , et al . Synthesis of graphene via electrochemical reduction method: preparation and characterization [J]. Journal of Functional Materials, 2015, 46(16): 16009-16015. | |
32 | 叶振华 . 化工吸附分离过程[M]. 北京: 中国石化出版社, 1992: 41 |
Ye Z H . Chemical Engineering Adsorption Processes[M]. Beijing: China Petrochemical Press, 1992: 41 | |
33 | Ho Y S . Citation review of Lagergren kinetic rate equation on adsorption reactions[J]. Scientometrics, 2004, 59: 171-177. |
34 | Ho Y S . Review of second-order models for adsorption systems[J]. J. Hazard. Mater., 2006,136: 681-689. |
35 | Plazinski W , Rudzinski W , Plazinska A . Theoretical models of sorption kinetics including a surface reaction mechanism: a review[J]. Adv. Colloid. Interface. Sci., 2009, 152(1/2): 2-13. |
36 | Serna-Guerrero R , Sayari A . Modeling adsorption of CO2 on amine-functionalized mesoporous silica(Ⅱ): Kinetics and breakthrough curves[J]. Chem. Eng. J., 2010, 161(1/2): 182-190. |
37 | Avrami M . Kinetics of phase change(Ⅰ): General theory[J]. Journal of Chemical Physics, 1939, 7(12): 1103-1112. |
38 | Avrami M . Granulation, phase change, and microstructure kinetics of phase change(Ⅲ)[J]. Journal of Chemical Physics, 1941, 9(2): 177-184. |
39 | Benedict J B , Coppens P . Kinetics of the single-crystal to single-crystal two-photon photodimerization of alpha-trans-cinnamic acid to alpha-truxillic acid[J]. Journal of Physical Chemistry A, 2009, 113(13): 3116-3120. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[4] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[5] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[6] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[7] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[8] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[9] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[12] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[13] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[14] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[15] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||