1 |
DongY, MccartneyJ S, LuN. Critical review of thermal conductivity models for unsaturated soils[J]. Geotechnical and Geological Engineering, 2015, 33(2): 207-221.
|
2 |
AlrtimiA, RouainiaM, HaighS. Thermal conductivity of a sandy soil[J]. Applied Thermal Engineering, 2016, 106: 551-560.
|
3 |
ZhangN, WangZ Y. Review of soil thermal conductivity and predictive models[J]. International Journal of Thermal Sciences, 2017, 117: 172-183.
|
4 |
TurcotteD L. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926.
|
5 |
杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899.
|
|
YangP L, LuoY P, ShiY C. Fractal characteristics of soil characterized by weight distribution of particle sizes[J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899.
|
6 |
KouJ L, WuF M, LuH J, et al. The effective thermal conductivity of porous media based on statistical self-similarity[J]. Physics Letters A, 2009, 374(1): 62-65.
|
7 |
CaiS S, CuiT F, ZhengB R, et al. A fractal approach to calculate the thermal conductivity of moist soil[C]// Proceedings of the IGSHPA Technical/Research Conference and Expo 2017. Denver: IGSHPA, 2017: 420-429.
|
8 |
LehmannP, StähliM, PapritzA, et al. A fractal approach to model soil structure and to calculate thermal conductivity of soils[J]. Transport in Porous Media, 2003, 52(3): 313-332.
|
9 |
ThompsonA H, KatzA J, KrohnC E. The microgeometry and transport properties of sedimentary rock[J]. Advances in Physics, 1987, 36(5): 625-694.
|
10 |
QinX, CaiJ C, XuP, et al. A fractal model of effective thermal conductivity for porous media with various liquid saturation[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1149-1156.
|
11 |
WangY Y, MaC, LiuY F, et al. A model for the effective thermal conductivity of moist porous building materials based on fractal theory[J]. International Journal of Heat and Mass Transfer, 2018, 125: 387-399.
|
12 |
张东辉, 金峰, 施明恒, 等. 分形多孔介质中的热传导[J]. 应用科学学报, 2003, 21(3): 253-257.
|
|
ZhangD H, JinF, ShiM H, et al. Heat conduction in fractal porous media [J]. Journal of Applied Sciences, 2003, 21(3): 253-257.
|
13 |
JinH Q, YaoX L, FanL W, et al. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: effects of moisture content[J]. International Journal of Heat and Mass Transfer, 2016, 92: 589-602.
|
14 |
JuY, ZhengJ T, EpsteinM, et al. 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 279: 212-226.
|
15 |
YuB M, ZouM Q, FengY J. Permeability of fractal porous media by Monte Carlo simulations[J]. International Journal of Heat and Mass Transfer, 2005, 48(13): 2787-2794.
|
16 |
MaierR S, BernardR S. Lattice-Boltzmann accuracy in pore-scale flow simulation[J]. Journal of Computational Physics, 2010, 229(2): 233-255.
|
17 |
ZhangX X, CrawfordJ W, YoungI M. A lattice Boltzmann model for simulating water flow at pore scale in unsaturated soils[J]. Journal of Hydrology, 2016, 538: 152-160.
|
18 |
FanH, ZhengH. MRT-LBM-based numerical simulation of seepage flow through fractal fracture networks[J]. Science China Technological Sciences, 2013, 56(12): 3115-3122.
|
19 |
WangM R, WangJ K, PanN, et al. Three-dimensional effect on the effective thermal conductivity of porous media[J]. Journal of Physics D: Applied Physics, 2007, 40(1): 260-265.
|
20 |
WangM R, PanN. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1325-1331.
|
21 |
FangW Z, ChenL, GouJ J, et al. Predictions of effective thermal conductivities for three-dimensional four-directional braided composites using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016, 92: 120-130.
|
22 |
CuiZ D, JiaY J. Analysis of electron microscope images of soil pore structure for the study of land subsidence in centrifuge model tests of high-rise building groups[J]. Engineering Geology, 2013, 164: 107-116.
|
23 |
CaiS S, ZhangB X, CuiT F, et al. Mesoscopic study of the effective thermal conductivity of dry and moist soil[J]. International Journal of Refrigeration, 2019, 98: 171-181.
|
24 |
YuB M. Fractal character for tortuous streamtubes in porous media[J]. Chinese Physics Letters, 2005, 22(1): 158-160.
|
25 |
ChenX, HanP. A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms[J]. International Journal of Heat and Fluid Flow, 2000, 21(4): 463-467.
|
26 |
WangM R, WangJ K, PanN, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, 2007, 75(3): 036702.
|
27 |
GinzburgI, VerhaegheF, D'HumièresD. Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions[J]. Communications in Computational Physics, 2008, 3(2): 427-478.
|
28 |
D'OrazioA, CorcioneM, CelataG P. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition[J]. International Journal of Thermal Sciences, 2004, 43(6): 575-586.
|
29 |
ZouQ S, HeX Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1598.
|
30 |
崔腾飞. 渗流影响下的地埋管换热器全尺度传热研究[D]. 武汉: 华中科技大学, 2018.
|
|
CuiT F. Full-scale heat transfer analysis of ground heat exchangers with the effect of groundwater flow[D]. Wuhan: Huazhong University of Science and Technology, 2018.
|
31 |
MandelbrotB B. The Fractal Geometry of Nature[M]. New York: W. H. Freeman and Co., 1983.
|