化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2680-2688.DOI: 10.11949/0438-1157.20230231
收稿日期:
2023-03-13
修回日期:
2023-06-01
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
王丽伟
作者简介:
李振(1998—),男,硕士研究生,zhen_li@sjtu.edu.cn
基金资助:
Zhen LI(), Bo ZHANG, Liwei WANG(
)
Received:
2023-03-13
Revised:
2023-06-01
Online:
2023-06-05
Published:
2023-07-27
Contact:
Liwei WANG
摘要:
针对固-液相变材料易泄漏和热导率较低的问题,提出了聚乙二醇(PEG)固-固相变的复合材料。复合材料由不同比例、热导率较大的膨胀石墨(EG)骨架与PEG化学枝接得到。研究结果表明,EG质量分数为10%时,复合相变材料仍存在泄漏现象,而EG质量分数为20%、30%时不再有泄漏现象,复合材料表现为固-固相变。另外,复合材料的热导率随EG含量的增加而增大,其中EG质量分数为30%时,复合材料的热导率最高,为8.031 W·m-1·K-1,是纯相变材料热导率(0.289 W·m-1·K-1)的27.79倍。经历50次循环后,所有复合相变材料的相变温度和相变焓均未有明显变化,证明其具有良好的热稳定性。考虑综合性能,EG的质量分数为20%时,复合相变材料性能最佳,定形效果良好,相变焓(138.30 J·g-1)和结晶度(88.6%)较高,热导率也可以达到6.870 W·m-1·K-1。
中图分类号:
李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688.
Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials[J]. CIESC Journal, 2023, 74(6): 2680-2688.
材料 | 熔化温度Tm/℃ | 熔化焓ΔHm/(J·g-1) | 凝固温度Tc/℃ | 凝固焓ΔHc/(J·g-1) | 过冷度ΔT/℃ | 结晶度η/% |
---|---|---|---|---|---|---|
PEG | 59.02 | 203.60 | 43.39 | 190.43 | 15.63 | 100 |
PEG-EG10% | 57.35 | 156.19 | 36.72 | 141.89 | 20.63 | 89.3 |
PEG-EG20% | 54.79 | 138.30 | 35.98 | 131.99 | 18.81 | 88.6 |
PEG-EG30% | 53.76 | 111.13 | 37.92 | 104.04 | 15.84 | 80.9 |
表1 PEG-EG复合相变材料的DSC数据
Table 1 DSC data of PEG-EG composite phase change materials
材料 | 熔化温度Tm/℃ | 熔化焓ΔHm/(J·g-1) | 凝固温度Tc/℃ | 凝固焓ΔHc/(J·g-1) | 过冷度ΔT/℃ | 结晶度η/% |
---|---|---|---|---|---|---|
PEG | 59.02 | 203.60 | 43.39 | 190.43 | 15.63 | 100 |
PEG-EG10% | 57.35 | 156.19 | 36.72 | 141.89 | 20.63 | 89.3 |
PEG-EG20% | 54.79 | 138.30 | 35.98 | 131.99 | 18.81 | 88.6 |
PEG-EG30% | 53.76 | 111.13 | 37.92 | 104.04 | 15.84 | 80.9 |
复合相变材料成分 | 比例 | 制备方法 | 相变形式 | 相变焓/ (J·g-1) | 热导率/ (W·m-1·K-1) | 文献 |
---|---|---|---|---|---|---|
氧化石墨烯/PEG | 1.72%/89% | 化学枝接 | 固-固 | 150.7 | 0.972 | [ |
EG/PEG/二氧化硅 | 6%/84%/10% | 物理真空浸渍 | 固-液 | 129 | 1.867 | [ |
石墨烯纳米片/PEG | 2%/98% | 物理吸附 | 固-液 | 170.2 | 0.784 | [ |
氧化石墨烯/PEG | 9.6%/90.4% | 化学枝接 | 固-固 | 157.6 | 0.983 | [ |
磷酸化聚乙烯醇/石墨烯气凝胶/PEG | 15%/1.6%/83.4% | 物理溶胶-凝胶法 | 固-液 | 119.6 | 0.61 | [ |
碳纳米管/硅藻土/PEG | 3.2%/36.8%/60% | 物理浸渍 | 固-液 | 107.4 | 1.52 | [ |
rGO/PEG | 5%/95% | 化学枝接 | 固-固 | 138.7 | 0.696 | [ |
石墨烯纳希片/氮化硼/PEG | 1%/30%/69% | 物理共混 | 固-液 | 123.8 | 1.33 | [ |
EG/PEG | 20%/80% | 化学枝接 | 固-固 | 138.30 | 6.870 | 本文 |
表2 文献报道PEG复合相变材料对比
Table 2 Comparison of PEG composite phase change materials reported in literature
复合相变材料成分 | 比例 | 制备方法 | 相变形式 | 相变焓/ (J·g-1) | 热导率/ (W·m-1·K-1) | 文献 |
---|---|---|---|---|---|---|
氧化石墨烯/PEG | 1.72%/89% | 化学枝接 | 固-固 | 150.7 | 0.972 | [ |
EG/PEG/二氧化硅 | 6%/84%/10% | 物理真空浸渍 | 固-液 | 129 | 1.867 | [ |
石墨烯纳米片/PEG | 2%/98% | 物理吸附 | 固-液 | 170.2 | 0.784 | [ |
氧化石墨烯/PEG | 9.6%/90.4% | 化学枝接 | 固-固 | 157.6 | 0.983 | [ |
磷酸化聚乙烯醇/石墨烯气凝胶/PEG | 15%/1.6%/83.4% | 物理溶胶-凝胶法 | 固-液 | 119.6 | 0.61 | [ |
碳纳米管/硅藻土/PEG | 3.2%/36.8%/60% | 物理浸渍 | 固-液 | 107.4 | 1.52 | [ |
rGO/PEG | 5%/95% | 化学枝接 | 固-固 | 138.7 | 0.696 | [ |
石墨烯纳希片/氮化硼/PEG | 1%/30%/69% | 物理共混 | 固-液 | 123.8 | 1.33 | [ |
EG/PEG | 20%/80% | 化学枝接 | 固-固 | 138.30 | 6.870 | 本文 |
1 | 焦敬平, 池砚文. 世界可再生能源发展情况分析[J]. 能源, 2019(12): 59-63. |
Jiao J P, Chi Y W. Analysis on the development of renewable energy in the world[J]. Energy, 2019(12): 59-63. | |
2 | 董淑华, 江建飞. 我国可再生能源开发利用对策研究[J]. 现代经济信息, 2019(17): 362. |
Dong S H, Jiang J F. Study on the countermeasures for the development and utilization of renewable energy in China[J]. Modern Economic Information, 2019(17): 362. | |
3 | 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602-1610. |
Wang X, Chen H S, Xu Y J, et al. Advances and prospects in thermal energy storage: a critical review[J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. | |
4 | Cheng Q J, Cheng X L, Wang X, et al. Supercooling regulation and thermal property optimization of erythritol as phase change material for thermal energy storage[J]. Journal of Energy Storage, 2022, 52: 105000. |
5 | Li S W, Li J, Liao Y N, et al. Dual-functional polyethylene glycol/graphene aerogel phase change composites with ultrahigh loading for thermal energy storage[J]. Journal of Energy Storage, 2022, 54: 105337. |
6 | Amin M, Putra N, Kosasih E A, et al. Thermal properties of beeswax/graphene phase change material as energy storage for building applications[J]. Applied Thermal Engineering, 2017, 112: 273-280. |
7 | Ko J, Jeong J W. Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111085. |
8 | Yu C B, Youn J R, Song Y S. Multiple energy harvesting based on reversed temperature difference between graphene aerogel filled phase change materials[J]. Macromolecular Research, 2019, 27(6): 606-613. |
9 | Zhang Y A, Gurzadyan G G, Umair M M, et al. Ultrafast and efficient photothermal conversion for sunlight-driven thermal-electric system[J]. Chemical Engineering Journal, 2018, 344: 402-409. |
10 | 凌子夜, 张正国, 方晓明, 等. 不同复合相变材料用于电子器件控温性能的研究[J]. 工程热物理学报, 2015, 36(1): 147-150. |
Ling Z Y, Zhang Z G, Fang X M, et al. Performances of a thermal management system using different phase change materials on a simulative electronic chip[J]. Journal of Engineering Thermophysics, 2015, 36(1): 147-150. | |
11 | 赖艳华, 吴涛, 魏露露, 等. 基于相变材料的电子元件的散热性能[J]. 化工学报, 2014, 65(S1): 157-161. |
Lai Y H, Wu T, Wei L L, et al. Thermal performance of electronic components based on phase change materials[J]. CIESC Journal, 2014, 65(S1): 157-161. | |
12 | Ling Z Y, Wen X Y, Zhang Z G, et al. Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures[J]. Energy, 2018, 144: 977-983. |
13 | Ren Q L, Guo P H, Zhu J J. Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119199. |
14 | Wu W F, Ye G H, Zhang G Q, et al. Composite phase change material with room-temperature-flexibility for battery thermal management[J]. Chemical Engineering Journal, 2022, 428: 131116. |
15 | Xiang S X, Liu D J, Jiang C C, et al. Liquid-metal-based dynamic thermoregulating and self-powered electronic skin[J]. Advanced Functional Materials, 2021, 31(26): 2100940. |
16 | Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62. |
17 | Nie B J, Palacios A, Zou B Y, et al. Review on phase change materials for cold thermal energy storage applications[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110340. |
18 | Shi J M, Aftab W, Liang Z B, et al. Tuning the flexibility and thermal storage capacity of solid-solid phase change materials towards wearable applications[J]. Journal of Materials Chemistry A, 2020, 8(38): 20133-20140. |
19 | 方昕, 廉刚, 胡亚才, 等. 基于石墨烯气凝胶的定形相变材料储热性能研究[J]. 热科学与技术, 2016, 15(1): 13-18. |
Fang X, Lian G, Hu Y C, et al. Investigation on thermal energy storage characteristics of form-stable phase change materials supported by graphene aerogel[J]. Journal of Thermal Science and Technology, 2016, 15(1): 13-18. | |
20 | 罗李娟, 张凯, 杨文彬, 等. 形貌对石蜡/石墨烯气凝胶定形相变材料性能的影响[J]. 高分子材料科学与工程, 2017, 33(5): 93-96, 101. |
Luo L J, Zhang K, Yang W B, et al. Effect of morphology on the properties of paraffin/graphene aerogel shape-stable phase change materials[J]. Polymer Materials Science & Engineering, 2017, 33(5): 93-96, 101. | |
21 | Shchukina E M, Graham M, Zheng Z, et al. Nanoencapsulation of phase change materials for advanced thermal energy storage systems[J]. Chemical Society Reviews, 2018, 47(11): 4156-4175. |
22 | Zheng Z L, Chang Z, Xu G K, et al. Microencapsulated phase change materials in solar-thermal conversion systems: understanding geometry-dependent heating efficiency and system reliability[J]. ACS Nano, 2017, 11(1): 721-729. |
23 | Yuan K J, Liu J, Fang X M, et al. Novel facile self-assembly approach to construct graphene oxide-decorated phase-change microcapsules with enhanced photo-to-thermal conversion performance[J]. Journal of Materials Chemistry A, 2018, 6(10): 4535-4543. |
24 | Kenisarin M M, Kenisarina K M. Form-stable phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 1999-2040. |
25 | Zeng J L, Zheng S H, Yu S B, et al. Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials[J]. Applied Energy, 2014, 115: 603-609. |
26 | Alkan C, Sari A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage[J]. Solar Energy, 2008, 82(2): 118-124. |
27 | 高颖, 许子龙, 李晓旭, 等. PEG/EG/SiO2复合定形相变材料的制备与性能研究[J]. 化工新型材料, 2022, 50(5): 240-244, 249. |
Gao Y, Xu Z L, Li X X, et al. Preparation and property of PEG/EG/SiO2 composite form-stable PCM[J]. New Chemical Materials, 2022, 50(5): 240-244, 249. | |
28 | 杨同伟, 王少奇. PEG/UPR/石墨烯复合相变材料的制备及其在节能建筑中的传热性能研究[J]. 塑料工业, 2020, 48(2): 123-127. |
Yang T W, Wang S Q. Preparation of polyethylene glycol/unsaturated polyester resin/graphene composite phase change material and study on heat transfer performance in energy-saving buildings[J]. China Plastics Industry, 2020, 48(2): 123-127. | |
29 | Cheng Z L, Chang G J, Xue B, et al. Hierarchical Ni-plated melamine sponge and MXene film synergistically supported phase change materials towards integrated shape stability, thermal management and electromagnetic interference shielding[J]. Journal of Materials Science & Technology, 2023, 132: 132-143. |
30 | Liu Y, Liu H C, Qi H S. High efficiency electro- and photo-thermal conversion cellulose nanofiber-based phase change materials for thermal management[J]. Journal of Colloid and Interface Science, 2023, 629: 478-486. |
31 | Gök Ö, Alkan C, Konuklu Y. Developing a poly(ethylene glycol)/cellulose phase change reactive composite for cooling application[J]. Solar Energy Materials and Solar Cells, 2019, 191: 345-349. |
32 | Li C C, Zhang B, Liu Q X. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29: 101339. |
33 | Chen W C, Liang X H, Wang S F, et al. SiO2 hydrophilic modification of expanded graphite to fabricate form-stable ternary nitrate composite room temperature phase change material for thermal energy storage[J]. Chemical Engineering Journal, 2021, 413: 127549. |
34 | Wei B J, Zhang L, Yang S Q. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance[J]. Chemical Engineering Journal, 2021, 404: 126437. |
35 | Xu T, Wang D, Qiu P, et al. In situ synthesis of porous Si dispersed in carbon nanotube intertwined expanded graphite for high-energy lithium-ion batteries[J]. Nanoscale, 2018, 10(35): 16638-16644. |
36 | Zhao Q, Hao X G, Su S M, et al. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(26): 15871-15879. |
37 | Shen J W, Huang W Y, Zuo S W, et al. Polyethylene/grafted polyethylene/graphite nanocomposites: preparation, structure, and electrical properties[J]. Journal of Applied Polymer Science, 2005, 97(1): 51-59. |
38 | Wang J W, Wu Z H, Xie H Q, et al. Graphene oxide/polyurethane-based composite solid-solid phase change materials with enhanced energy storage capacity and photothermal performance[J]. International Journal of Energy Research, 2022, 46(15): 22744-22756. |
39 | 仝仓, 李祥立, 端木琳. 聚乙二醇/二氧化硅/膨胀石墨相变储能材料的制备与性能研究[J]. 区域供热, 2018(3): 100-104. |
Tong C, Li X L, Duanmu L. Preparation and properties of polyethylene glycol/silica/expanded graphite phase change energy storage materials[J]. District Heating, 2018(3): 100-104. | |
40 | 王浩, 何丽红, 杨帆, 等. 聚乙二醇/石墨烯纳米片复合相变材料的制备及其性能研究[J]. 应用化工, 2018, 47(6): 1119-1122, 1126. |
Wang H, He L H, Yang F, et al. Preparation and properties of polyethylene glycol/graphene nanoplates composite phase change materials[J]. Applied Chemical Industry, 2018, 47(6): 1119-1122, 1126. | |
41 | Wang F, Zhang P, Mou Y R, et al. Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage[J]. Polymer Testing, 2017, 63: 494-504. |
42 | Shen J, Zhang P, Song L X, et al. Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material[J]. Composites Part B-Engineering, 2019, 179: 107545. |
43 | Qian T T, Zhu S K, Wang H L, et al. Comparative study of carbon nanoparticles and single-walled carbon nanotube for light-heat conversion and thermal conductivity enhancement of the multifunctional PEG/diatomite composite phase change material[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29698-29707. |
44 | Mu B Y, Li M. Fabrication and characterization of polyurethane-grafted reduced graphene oxide as solid-solid phase change materials for solar energy conversion and storage[J]. Solar Energy, 2019, 188: 230-238. |
45 | Yang J, Tang L S, Bao R Y, et al. Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets[J]. Chemical Engineering Journal, 2017, 315: 481-490. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[6] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[7] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[8] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[11] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[12] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[13] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[14] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[15] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 432
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||