化工学报 ›› 2012, Vol. 63 ›› Issue (9): 2877-2881.DOI: 10.3969/j.issn.0438-1157.2012.09.032

• 过程系统工程 • 上一篇    下一篇

基于证据理论的优化集成分类器融合算法及应用

杜海莲1, 吕锋1, 辛涛1, 杜妮2   

  1. 1. 河北师范大学职业技术学院, 河北 石家庄 050024;
    2. 河北师范大学物理科学与信息工程学院, 河北 石家庄 050024
  • 收稿日期:2012-06-16 修回日期:2012-06-23 出版日期:2012-09-05 发布日期:2012-09-05
  • 通讯作者: 吕锋
  • 作者简介:杜海莲(1978-),女,硕士,讲师。
  • 基金资助:

    国家自然科学基金项目(60974063,61175059);河北师范大学科学研究基金项目(L2011Q10);河北省科技厅资助项目(11215650)。

Algorithm and application of optimal multi-classifier combination based on evidence theory

DU Hailian1, LÜ Feng1, XIN Tao1, DU Ni2   

  1. 1. College of Academic and Technology, Hebei Normal University, Shijiazhuang 050024, Hebei, China;
    2. College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2012-06-16 Revised:2012-06-23 Online:2012-09-05 Published:2012-09-05
  • Supported by:

    supported by the National Natural Science Foundation of China(60974063,61175059),the Foundation of Hebei Normal University(L2011Q10)and the Foundation of the Department of Science and Technology of Hebei Province(11215650).

摘要: 多分类器融合方法在融合过程中需要对各分类器的输出进行加权,常见的加权方法是通过各分类器的分类正确率计算分类器的加权,但是这种方法得出的权值常常是不精确的。针对这个问题,给出了一种确定各个多分类器权值的方法。首先,通过训练集样本得出分类器系统的输出向量。然后,依据多分类器系统的输出向量与训练集样本的类别向量之间的距离最小提出一种权值的优化学习算法。最后,将得出的权值用于多分类器系统对故障类别的判定。实验结果表明,提出的方法提高了分类的正确率,能更好地判别出故障的类别。

关键词: 故障诊断, 多分类器融合, 证据理论

Abstract: In the multi-classifier system,how to determine the weights of individual classifier in order to get more accurate results becomes a question that need to be solved.An optimal weight learning method is presented in this paper.First,the training samples are respectively input into the multi-classifier system based on Dempster-Shafer theory in order to obtain the output vector.Then the error is calculated by means of figuring up the distance between the output vector and class vector of corresponding training sample,and the objective function is defined as mean-square error of all the training samples.The optimal weight vector is obtained by means of minimizing the objective function.Finally,new samples are classified according to the optimal weight vector.The effectiveness of this method is illustrated by the UCI standard data set and electric actuator fault diagnostic experiment.

Key words: fault diagnosis, multi-classifier combination, Dempster-Shafer theory

中图分类号: