1 |
卢浩贤, 肖彪, 何林, 等. 制冷空调系统中压缩机缺氟可靠性的试验研究[J]. 环境技术, 2018, 36(2): 55-59, 81.
|
|
Lu H X, Xiao B, He L, et al. Research on reliability experiment of compressor refrigerant leakage for air conditioning system [J]. Environmental Technology, 2018, 36(2): 55-59, 81.
|
2 |
王录雁, 王强, 张梅军, 等. 基于EMD的滚动轴承故障灰色诊断方法[J]. 振动与冲击, 2014, 33(3): 197-202.
|
|
Wang L Y, Wang Q, Zhang M J, et al. A grey fault diagnosis method for rolling bearings based on EMD [J]. Journal of Vibration and Shock, 2014, 33(3): 197-202.
|
3 |
陈俊洵, 程龙生, 胡绍林, 等. 基于EMD的改进马田系统的滚动轴承故障诊断[J]. 振动与冲击, 2017, 36(5): 151-156.
|
|
Chen J X, Cheng L S, Hu S L, et al. Fault diagnosis of rolling bearings using modified Mahalanobis-Taguchi system based on EMD [J]. Journal of Vibration and Shock, 2017, 36(5): 151-156.
|
4 |
潘洋洋, 何伟, 朱丹宸. 基于CEEMD与IMCKD的滚动轴承故障诊断方法[J]. 机电工程技术, 2019, 48(10): 98-102.
|
|
Pan Y Y, He W, Zhu D C. Fault diagnosis method for rolling bearings based on CEEMD and IMCKD [J]. Mechanical & Electrical Engineering Technology, 2019, 48(10): 98-102.
|
5 |
卓仁雄, 肖金凤. 基于改进的集合经验模态分解的电动机滚动轴承故障诊断研究[J]. 机械制造与自动化, 2019, 48(1): 36-39.
|
|
Zhuo R X, Xiao J F. Research on fault diagnosis method of motor bearing based on improved EEMD and SVM [J]. Machine Building & Automation, 2019, 48(1): 36-39.
|
6 |
Kong Y, Wang T Y, Chu F L. Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear [J]. Renewable Energy, 2019, 132: 1373-1388.
|
7 |
Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise [C]// 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011: 4144-4147.
|
8 |
The Case Western Reserve University Bearing Data Center Website. Bearing Data Center Seeded Fault Test Data [DB/OL]. [2001-11-12]. .
|
9 |
Paquet C, Lavieille M, Schuster W. Aircraft supplemental cooling system noise propagation and radiation: comparisons between acoustics numerical modeling and testing [C]// 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). AIAA, 2011.
|
10 |
Deng M Q, Deng A D, Zhu J, et al. Bandwidth Fourier decomposition and its application in incipient fault identification of rolling bearings [J]. Measurement Science and Technology, 2020, 31(1): 015012.
|
11 |
Wang L C, Der S Z, Nasrabadi N M. Automatic target recognition using a feature-decomposition and data-decomposition modular neural network [C]// Proc. SPIE3307, Applications of Artificial Neural Networks in Image Processing Ⅲ. 1998, 3307: 2-13.
|
12 |
Lilliefors H W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown [J]. Journal of the American Statistical Association, 1967, 62(318): 399-402.
|
13 |
Thissen D, Steinberg L, Kuang D. Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons [J]. Journal of Educational and Behavioral Statistics, 2002, 27(1): 77-83.
|
14 |
刘晓婉. 基于CEEMDAN模糊熵和SVM的滚动轴承故障诊断[J]. 现代制造技术与装备, 2019, (9): 178-179.
|
|
Liu X W. Fault diagnosis of rolling bearing based on CEMDAN fuzzy entropy and SVM [J]. Modern Manufacturing Technology and Equipment, 2019, (9): 178-179.
|
15 |
Friedl M A, Brodley C E. Decision tree classification of land cover from remotely sensed data [J]. Remote Sensing of Environment, 1997, 61(3): 399-409.
|
16 |
Liaw A, Wiener M. Classification and regression by RandomForest [J]. R News, 2002, 2(3): 18-22.
|