化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3131-3144.DOI: 10.11949/0438-1157.20211830
孙哲1(),金华强3,李康1,顾江萍3,黄跃进1,沈希1,2(
)
收稿日期:
2021-12-26
修回日期:
2022-03-22
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
沈希
作者简介:
孙哲(1989—),男,博士,助理研究员,基金资助:
Zhe SUN1(),Huaqiang JIN3,Kang LI1,Jiangping GU3,Yuejin HUANG1,Xi SHEN1,2(
)
Received:
2021-12-26
Revised:
2022-03-22
Online:
2022-07-05
Published:
2022-08-01
Contact:
Xi SHEN
摘要:
制冷空调系统广泛用于建筑环境调节,是建筑能耗的重要组成部分,而系统故障运行会造成15%~20%的能耗增加。以深度学习为代表的数据驱动方法是故障诊断的热点技术。然而,数据驱动需要依赖大量标记数据从而限制了其应用。针对上述问题,提出一种基于知识数据化表达的故障诊断方法,通过将故障诊断先验知识以数据化的形式表达弥补真实标记数据不足的难题。首先,提出以随机缩放策略为信息扩增手段的知识数据化方法,并利用添加噪声达到生成样本与真实样本一致性更优的目的。然后,提出基于基准模型的目标系统偏离特性表征方法,将目标系统数据与生成数据的格式统一。最后,利用生成数据训练模型并在ASHRAE RP-1043数据集上验证,综合诊断正确率达82.67%,与经典的监督学习方法效果接近且完全无须标记数据,具有广泛应用前景。
中图分类号:
孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144.
Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation[J]. CIESC Journal, 2022, 73(7): 3131-3144.
网络层 | 输出尺寸 | 参数数量 |
---|---|---|
卷积层 | (none, 9, 6, 32) | 416 |
批归一化 | (none, 9, 6, 32) | 128 |
Dropout层 | (none, 9, 6, 32) | 0 |
卷积层 | (none, 6, 5, 64) | 16448 |
批归一化 | (none, 6, 5, 64) | 256 |
Dropout层 | (none, 6, 5, 64) | 0 |
卷积层 | (none, 4, 4, 128) | 49280 |
批归一化 | (none, 4, 4, 128) | 512 |
Dropout层 | (none, 4, 4, 128) | 0 |
Flatten层 | (none, 2048) | 0 |
全连接层 | (none, 128) | 262272 |
Softmax层 | (none, 6) | 774 |
表1 深度诊断模型网络结构
Table 1 The network structure of deep diagnosis model
网络层 | 输出尺寸 | 参数数量 |
---|---|---|
卷积层 | (none, 9, 6, 32) | 416 |
批归一化 | (none, 9, 6, 32) | 128 |
Dropout层 | (none, 9, 6, 32) | 0 |
卷积层 | (none, 6, 5, 64) | 16448 |
批归一化 | (none, 6, 5, 64) | 256 |
Dropout层 | (none, 6, 5, 64) | 0 |
卷积层 | (none, 4, 4, 128) | 49280 |
批归一化 | (none, 4, 4, 128) | 512 |
Dropout层 | (none, 4, 4, 128) | 0 |
Flatten层 | (none, 2048) | 0 |
全连接层 | (none, 128) | 262272 |
Softmax层 | (none, 6) | 774 |
故障类别 | Level1程度 | Level2程度 | Level3程度 | Level4程度 |
---|---|---|---|---|
冷凝器结垢(cf) | 堵塞10%的换热管 | 堵塞20%的换热管 | 堵塞30%的换热管 | 堵塞40%的换热管 |
冷却水流量减少(fwc) | 水流量减少10% | 水流量减少20% | 水流量减少30% | 水流量减少40% |
冷冻水流量减少(fwe) | 水流量减少10% | 水流量减少20% | 水流量减少30% | 水流量减少40% |
含非凝性气体(nc) | 含1%非凝性气体 | 含2%非凝性气体 | 含3%非凝性气体 | 含4%非凝性气体 |
制冷剂泄漏(rl) | 泄漏10%制冷剂 | 泄漏20%制冷剂 | 泄漏30%制冷剂 | 泄漏40%制冷剂 |
制冷剂过充(ro) | 过充10%制冷剂 | 过充20%制冷剂 | 过充30%制冷剂 | 过充40%制冷剂 |
表2 不同严重程度故障的模拟条件
Table 2 Simulated conditions for faults of various severity
故障类别 | Level1程度 | Level2程度 | Level3程度 | Level4程度 |
---|---|---|---|---|
冷凝器结垢(cf) | 堵塞10%的换热管 | 堵塞20%的换热管 | 堵塞30%的换热管 | 堵塞40%的换热管 |
冷却水流量减少(fwc) | 水流量减少10% | 水流量减少20% | 水流量减少30% | 水流量减少40% |
冷冻水流量减少(fwe) | 水流量减少10% | 水流量减少20% | 水流量减少30% | 水流量减少40% |
含非凝性气体(nc) | 含1%非凝性气体 | 含2%非凝性气体 | 含3%非凝性气体 | 含4%非凝性气体 |
制冷剂泄漏(rl) | 泄漏10%制冷剂 | 泄漏20%制冷剂 | 泄漏30%制冷剂 | 泄漏40%制冷剂 |
制冷剂过充(ro) | 过充10%制冷剂 | 过充20%制冷剂 | 过充30%制冷剂 | 过充40%制冷剂 |
故障类别 | TEI-TEO | TCO-TCI | PRE | PRC | TRCsub | Tshsuc | Tshdis |
---|---|---|---|---|---|---|---|
cf | ● | ↑ | ● | ↑↑ | ● | ● | ● |
fwc | ● | ↑↑↑ | ↑ | ↑↑ | ↑↑ | ↓ | ● |
fwe | ↑↑↑ | ● | ↑ | ● | ● | ↓ | ● |
nc | ● | ↑ | ↑ | ↑↑↑ | ↑↑↑↑ | ● | ↑↑ |
rl | ● | ● | ● | ↓↓ | ↓↓↓ | ● | ● |
ro | ● | ? | ↓ | ↑↑ | ↑↑↑ | ● | ↑ |
表3 故障的多维偏离矢量
Table 3 Multi-dimensional deviation vector of failure
故障类别 | TEI-TEO | TCO-TCI | PRE | PRC | TRCsub | Tshsuc | Tshdis |
---|---|---|---|---|---|---|---|
cf | ● | ↑ | ● | ↑↑ | ● | ● | ● |
fwc | ● | ↑↑↑ | ↑ | ↑↑ | ↑↑ | ↓ | ● |
fwe | ↑↑↑ | ● | ↑ | ● | ● | ↓ | ● |
nc | ● | ↑ | ↑ | ↑↑↑ | ↑↑↑↑ | ● | ↑↑ |
rl | ● | ● | ● | ↓↓ | ↓↓↓ | ● | ● |
ro | ● | ? | ↓ | ↑↑ | ↑↑↑ | ● | ↑ |
参数 | 误差均值 |
---|---|
TEI-TEO | 0.045 |
TCO-TCI | 0.043 |
PRE | 0.152 |
PRC | 0.395 |
TRCsub | 0.213 |
Tshsuc | 0.169 |
Tshdis | 0.355 |
表4 基准模型的预测误差绝对均值
Table 4 The absolute mean of the prediction error of the benchmark model
参数 | 误差均值 |
---|---|
TEI-TEO | 0.045 |
TCO-TCI | 0.043 |
PRE | 0.152 |
PRC | 0.395 |
TRCsub | 0.213 |
Tshsuc | 0.169 |
Tshdis | 0.355 |
故障类别 | MMD值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
无噪声 | 噪声/2 | 噪声/1 | 噪声/0.5 | 噪声/0.25 | 噪声/0.15 | 噪声/0.10 | 噪声/0.05 | 噪声/0.025 | 噪声/0.01 | |
正常(normal) | 0 | 0.546 | 0.216 | 0.161 | 0.216 | 0.235 | 0.233 | 0.228 | 0.225 | 0.224 |
冷凝器结垢(cf) | 0.752 | 0.643 | 0.46 | 0.228 | 0.174 | 0.205 | 0.23 | 0.233 | 0.228 | 0.225 |
冷却水流量减少(fwc) | 0.513 | 0.52 | 0.512 | 0.483 | 0.42 | 0.319 | 0.267 | 0.207 | 0.225 | 0.231 |
冷冻水流量减少(fwe) | 0.4 | 0.396 | 0.406 | 0.352 | 0.272 | 0.202 | 0.179 | 0.205 | 0.227 | 0.229 |
含非凝性气体(nc) | 0.55 | 0.55 | 0.528 | 0.514 | 0.448 | 0.371 | 0.318 | 0.251 | 0.256 | 0.26 |
制冷剂泄漏(rl) | 0.777 | 0.712 | 0.59 | 0.364 | 0.215 | 0.208 | 0.225 | 0.236 | 0.229 | 0.225 |
制冷剂过充(ro) | 0.578 | 0.553 | 0.546 | 0.477 | 0.325 | 0.237 | 0.207 | 0.221 | 0.235 | 0.227 |
表5 不同策略下生成样本和真实样本的MMD评估
Table 5 MMD value of generated samples and real samples under different strategies
故障类别 | MMD值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
无噪声 | 噪声/2 | 噪声/1 | 噪声/0.5 | 噪声/0.25 | 噪声/0.15 | 噪声/0.10 | 噪声/0.05 | 噪声/0.025 | 噪声/0.01 | |
正常(normal) | 0 | 0.546 | 0.216 | 0.161 | 0.216 | 0.235 | 0.233 | 0.228 | 0.225 | 0.224 |
冷凝器结垢(cf) | 0.752 | 0.643 | 0.46 | 0.228 | 0.174 | 0.205 | 0.23 | 0.233 | 0.228 | 0.225 |
冷却水流量减少(fwc) | 0.513 | 0.52 | 0.512 | 0.483 | 0.42 | 0.319 | 0.267 | 0.207 | 0.225 | 0.231 |
冷冻水流量减少(fwe) | 0.4 | 0.396 | 0.406 | 0.352 | 0.272 | 0.202 | 0.179 | 0.205 | 0.227 | 0.229 |
含非凝性气体(nc) | 0.55 | 0.55 | 0.528 | 0.514 | 0.448 | 0.371 | 0.318 | 0.251 | 0.256 | 0.26 |
制冷剂泄漏(rl) | 0.777 | 0.712 | 0.59 | 0.364 | 0.215 | 0.208 | 0.225 | 0.236 | 0.229 | 0.225 |
制冷剂过充(ro) | 0.578 | 0.553 | 0.546 | 0.477 | 0.325 | 0.237 | 0.207 | 0.221 | 0.235 | 0.227 |
故障类别 | 故障严重程度 | 正确率/% | |||||
---|---|---|---|---|---|---|---|
无噪声 | 噪声/0.5 | 噪声/0.25 | 噪声/0.15 | 噪声/0.10 | 噪声/0.05 | ||
正常(normal) | 无 | 78.87 | 91.52 | 98.76 | 98.00 | 86.78 | 40.33 |
冷凝器结垢 (cf) | 堵塞10%的换热管-Level1 | 39.32 | 43.72 | 47.84 | 53.88 | 51.71 | 51.17 |
堵塞20%的换热管-Level2 | 59.37 | 61.04 | 64.32 | 83.32 | 69.66 | 56.69 | |
堵塞30%的换热管-Level3 | 61.79 | 66.72 | 65.88 | 79.84 | 68.96 | 59.23 | |
堵塞40%的换热管-Level4 | 75.04 | 70.68 | 73.00 | 83.72 | 79.54 | 58.95 | |
冷却水流量减少 (fwc) | 水流量减少10%-Level1 | 94.11 | 82.32 | 98.92 | 99.20 | 88.06 | 80.27 |
水流量减少20%-Level2 | 93.80 | 64.52 | 99.84 | 100.0 | 100.0 | 99.64 | |
水流量减少30%-Level3 | 99.92 | 99.92 | 100.0 | 99.52 | 100.0 | 100.0 | |
水流量减少40%-Level4 | 99.65 | 100.0 | 100.0 | 99.84 | 100.0 | 100.0 | |
冷冻水流量减少 (fwe) | 水流量减少10%-Level1 | 60.32 | 73.00 | 89.28 | 65.44 | 67.05 | 52.20 |
水流量减少20%-Level2 | 80.39 | 99.52 | 99.76 | 99.80 | 99.92 | 97.69 | |
水流量减少30%-Level3 | 92.91 | 99.80 | 99.96 | 100.0 | 100.0 | 100.0 | |
水流量减少40%-Level4 | 98.20 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
含非凝性气体 (nc) | 含1%非凝性气体-Level1 | 64.80 | 70.56 | 66.64 | 61.16 | 65.24 | 67.35 |
含2%非凝性气体-Level2 | 68.31 | 77.60 | 79.24 | 75.08 | 72.66 | 70.45 | |
含3%非凝性气体-Level3 | 71.80 | 78.28 | 81.12 | 72.92 | 75.59 | 73.87 | |
含4%非凝性气体-Level4 | 80.27 | 88.24 | 97.44 | 83.76 | 94.00 | 99.19 | |
制冷剂泄漏 (rl) | 泄漏10%制冷剂-Level1 | 5.56 | 1.68 | 0.08 | 0.00 | 8.55 | 27.68 |
泄漏20%制冷剂-Level2 | 11.29 | 25.16 | 4.48 | 2.48 | 10.76 | 27.60 | |
泄漏30%制冷剂-Level3 | 71.81 | 94.36 | 98.60 | 97.48 | 97.11 | 46.43 | |
泄漏40%制冷剂-Level4 | 93.87 | 99.60 | 99.96 | 99.00 | 97.78 | 89.84 | |
制冷剂过充 (ro) | 过充10%制冷剂-Level1 | 55.19 | 39.96 | 55.16 | 88.40 | 44.72 | 24.05 |
过充20%制冷剂-Level2 | 66.24 | 51.08 | 59.36 | 91.84 | 56.69 | 28.80 | |
过充30%制冷剂-Level3 | 68.67 | 57.04 | 77.40 | 93.84 | 91.60 | 77.61 | |
过充40%制冷剂-Level4 | 60.81 | 51.44 | 76.88 | 92.12 | 88.86 | 76.91 | |
总体 | Level1 | 56.88 | 57.54 | 65.24 | 66.58 | 58.87 | 49.01 |
Level2 | 65.47 | 67.21 | 72.25 | 78.65 | 70.92 | 60.17 | |
Level3 | 77.97 | 83.95 | 88.82 | 91.66 | 88.58 | 71.07 | |
Level4 | 83.82 | 85.93 | 92.29 | 93.78 | 92.42 | 80.74 | |
Level1~Level4 | 71.03 | 73.65 | 79.65 | 82.67 | 77.70 | 65.25 |
表6 不同生成策略下故障诊断精度对比
Table 6 Comparison of fault diagnosis accuracy under different generation strategies
故障类别 | 故障严重程度 | 正确率/% | |||||
---|---|---|---|---|---|---|---|
无噪声 | 噪声/0.5 | 噪声/0.25 | 噪声/0.15 | 噪声/0.10 | 噪声/0.05 | ||
正常(normal) | 无 | 78.87 | 91.52 | 98.76 | 98.00 | 86.78 | 40.33 |
冷凝器结垢 (cf) | 堵塞10%的换热管-Level1 | 39.32 | 43.72 | 47.84 | 53.88 | 51.71 | 51.17 |
堵塞20%的换热管-Level2 | 59.37 | 61.04 | 64.32 | 83.32 | 69.66 | 56.69 | |
堵塞30%的换热管-Level3 | 61.79 | 66.72 | 65.88 | 79.84 | 68.96 | 59.23 | |
堵塞40%的换热管-Level4 | 75.04 | 70.68 | 73.00 | 83.72 | 79.54 | 58.95 | |
冷却水流量减少 (fwc) | 水流量减少10%-Level1 | 94.11 | 82.32 | 98.92 | 99.20 | 88.06 | 80.27 |
水流量减少20%-Level2 | 93.80 | 64.52 | 99.84 | 100.0 | 100.0 | 99.64 | |
水流量减少30%-Level3 | 99.92 | 99.92 | 100.0 | 99.52 | 100.0 | 100.0 | |
水流量减少40%-Level4 | 99.65 | 100.0 | 100.0 | 99.84 | 100.0 | 100.0 | |
冷冻水流量减少 (fwe) | 水流量减少10%-Level1 | 60.32 | 73.00 | 89.28 | 65.44 | 67.05 | 52.20 |
水流量减少20%-Level2 | 80.39 | 99.52 | 99.76 | 99.80 | 99.92 | 97.69 | |
水流量减少30%-Level3 | 92.91 | 99.80 | 99.96 | 100.0 | 100.0 | 100.0 | |
水流量减少40%-Level4 | 98.20 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
含非凝性气体 (nc) | 含1%非凝性气体-Level1 | 64.80 | 70.56 | 66.64 | 61.16 | 65.24 | 67.35 |
含2%非凝性气体-Level2 | 68.31 | 77.60 | 79.24 | 75.08 | 72.66 | 70.45 | |
含3%非凝性气体-Level3 | 71.80 | 78.28 | 81.12 | 72.92 | 75.59 | 73.87 | |
含4%非凝性气体-Level4 | 80.27 | 88.24 | 97.44 | 83.76 | 94.00 | 99.19 | |
制冷剂泄漏 (rl) | 泄漏10%制冷剂-Level1 | 5.56 | 1.68 | 0.08 | 0.00 | 8.55 | 27.68 |
泄漏20%制冷剂-Level2 | 11.29 | 25.16 | 4.48 | 2.48 | 10.76 | 27.60 | |
泄漏30%制冷剂-Level3 | 71.81 | 94.36 | 98.60 | 97.48 | 97.11 | 46.43 | |
泄漏40%制冷剂-Level4 | 93.87 | 99.60 | 99.96 | 99.00 | 97.78 | 89.84 | |
制冷剂过充 (ro) | 过充10%制冷剂-Level1 | 55.19 | 39.96 | 55.16 | 88.40 | 44.72 | 24.05 |
过充20%制冷剂-Level2 | 66.24 | 51.08 | 59.36 | 91.84 | 56.69 | 28.80 | |
过充30%制冷剂-Level3 | 68.67 | 57.04 | 77.40 | 93.84 | 91.60 | 77.61 | |
过充40%制冷剂-Level4 | 60.81 | 51.44 | 76.88 | 92.12 | 88.86 | 76.91 | |
总体 | Level1 | 56.88 | 57.54 | 65.24 | 66.58 | 58.87 | 49.01 |
Level2 | 65.47 | 67.21 | 72.25 | 78.65 | 70.92 | 60.17 | |
Level3 | 77.97 | 83.95 | 88.82 | 91.66 | 88.58 | 71.07 | |
Level4 | 83.82 | 85.93 | 92.29 | 93.78 | 92.42 | 80.74 | |
Level1~Level4 | 71.03 | 73.65 | 79.65 | 82.67 | 77.70 | 65.25 |
3 | Kim W, Katipamula S. A review of fault detection and diagnostics methods for building systems[J]. Science and Technology for the Built Environment, 2018, 24(1): 3-21. |
4 | 王姝婷. 基于贝叶斯网络单元的全空气空调系统故障检测与诊断方法研究[D]. 杭州: 浙江大学, 2021. |
Wang S T. Research on fault detection and diagnosis of all-air air conditioning systems using Bayesian network-based diagnostic units[D]. Hangzhou: Zhejiang University, 2021. | |
5 | Sun Z, Jin H Q, Gu J P, et al. Gradual fault early stage diagnosis for air source heat pump system using deep learning techniques[J]. International Journal of Refrigeration, 2019, 107: 63-72. |
6 | Sun Z, Jin H Q, Gu J P, et al. Studies on the online intelligent diagnosis method of undercharging sub-health air source heat pump water heater[J]. Applied Thermal Engineering, 2020, 169: 114957. |
7 | Wang Z W, Wang Z W, Gu X W, et al. Feature selection based on Bayesian network for chiller fault diagnosis from the perspective of field applications[J]. Applied Thermal Engineering, 2018, 129: 674-683. |
8 | van de Sand R, Corasaniti S, Reiff-Stephan J. Data-driven fault diagnosis for heterogeneous chillers using domain adaptation techniques[J]. Control Engineering Practice, 2021, 112: 104815. |
9 | 刘旭婷, 李益国, 孙栓柱, 等. 基于稀疏局部嵌入深度卷积网络的冷水机组故障诊断方法[J]. 化工学报, 2018, 69(12): 5155-5163. |
Liu X T, Li Y G, Sun S Z, et al. Fault diagnosis of chillers using sparsely local embedding deep convolutional neural network[J]. CIESC Journal, 2018, 69(12): 5155-5163. | |
10 | 王路瑶, 吴斌, 杜志敏, 等. 基于长短期记忆神经网络的数据中心空调系统传感器故障诊断[J]. 化工学报, 2018, 69(S2): 252-259. |
Wang L Y, Wu B, Du Z M, et al. Sensor fault detection and diagnosis for data center air conditioning system based on LSTM neural network[J]. CIESC Journal, 2018, 69(S2): 252-259. | |
11 | Xiao F, Zhao Y, Wen J, et al. Bayesian network based FDD strategy for variable air volume terminals[J]. Automation in Construction, 2014, 41: 106-118. |
12 | Fan C, Xiao F, Zhao Y. A short-term building cooling load prediction method using deep learning algorithms[J]. Applied Energy, 2017, 195: 222-233. |
13 | Zhao Y, Li T, Fan C, et al. A proactive fault detection and diagnosis method for variable-air-volume terminals in building air conditioning systems[J]. Energy and Buildings, 2019, 183: 527-537. |
14 | Li T, Zhao Y, Zhang C, et al. A semantic model-based fault detection approach for building energy systems[J]. Building and Environment, 2022, 207: 108548. |
15 | Li Z F, Shi S B, Chen H X, et al. Machine learning based diagnosis strategy for refrigerant charge amount malfunction of variable refrigerant flow system[J]. International Journal of Refrigeration, 2020, 110: 95-105. |
16 | Hu M, Chen H, Shen L, et al. A machine learning Bayesian network for refrigerant charge faults of variable refrigerant flow air conditioning system[J]. Energy and Buildings, 2018, 158: 668-676. |
17 | Guo Y, Tan Z, Chen H, et al. Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving[J]. Applied Energy, 2018, 225: 732-745. |
18 | Fan Y Q, Cui X Y, Han H, et al. Chiller fault diagnosis with field sensors using the technology of imbalanced data[J]. Applied Thermal Engineering, 2019, 159: 113933. |
19 | 张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学: 信息科学, 2020, 50(9): 1281-1302. |
Zhang B, Zhu J, Su H. Toward the third generation of artificial intelligence[J]. Scientia Sinica (Informationis), 2020, 50(9): 1281-1302. | |
20 | Liang J, Du R. Model-based fault detection and diagnosis of HVAC systems using support vector machine method[J]. International Journal of Refrigeration, 2007, 30(6): 1104-1114. |
1 | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. |
Hu A G. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15. | |
21 | Fan B, Du Z M, Jin X Q, et al. A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis[J]. Building and Environment, 2010, 45(12): 2698-2708. |
22 | Zhu Y, Jin X, Du Z. Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal[J]. Energy and Buildings, 2012, 44: 7-16. |
23 | Beghi A, Brignoli R, Cecchinato L, et al. Data-driven fault detection and diagnosis for HVAC water chillers[J]. Control Engineering Practice, 2016, 53: 79-91. |
2 | Zhao Y, Li T T, Zhang X J, et al. Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 85-101. |
24 | Li D, Hu G, Spanos C J. A data-driven strategy for detection and diagnosis of building chiller faults using linear discriminant analysis[J]. Energy and Buildings, 2016, 128: 519-529. |
25 | Li G, Hu Y, Chen H, et al. An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm[J]. Energy and Buildings, 2016, 116: 104-113. |
26 | Srivastava N, Hinton G E, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
27 | Iyer A, Nath S, Sarawagi S. Maximum mean discrepancy for class ratio estimation: convergence bounds and kernel selection[C]// Proceedings of the 31st International Conference on Machine Learning. New York: PMLR, 2014: 530-538. |
28 | Rüschendorf L. The Wasserstein distance and approximation theorems[J]. Probability Theory and Related Fields, 1985, 70(1): 117-129. |
29 | Obukhov A, Krasnyanskiy M. Quality assessment method for GAN based on modified metrics inception score and Fréchet inception distance[C]//Proceedings of the Computational Methods in Systems and Software. Berlin: Springer, 2020: 102-114. |
30 | 孙哲. 热泵系统亚健康及其智能在线诊断方法研究[D]. 杭州: 浙江工业大学, 2020. |
Sun Z. Study on the sub-health operation and its intelligent online diagnosis method for heat pump systems[D]. Hangzhou: Zhejiang University of Technology, 2020 | |
31 | Comstock M, Braun J. Development of analysis tools for the evaluation of fault detection and diagnostics in chillers [R]. West Lafayette, IN: Purdue University, 1999: 99-20. |
32 | Comstock M C, Braun J E, Groll E A. The sensitivity of chiller performance to common faults[J]. HVAC&R Research, 2001, 7(3): 263-279. |
[1] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[2] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[3] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[4] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[5] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[6] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[7] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[8] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[9] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[10] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[11] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[12] | 明迁, 高逸, 胡剑, 李盛杰, 王金江. 热交换器泄漏故障虚拟感知方法研究[J]. 化工学报, 2023, 74(4): 1836-1846. |
[13] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[14] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[15] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 302
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 526
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||