化工学报 ›› 2022, Vol. 73 ›› Issue (2): 827-837.doi: 10.11949/0438-1157.20211295

• 过程系统工程 • 上一篇    下一篇

基于加权统计特征KICA的故障检测与诊断方法

张成1(),潘立志2,李元2()   

  1. 1.沈阳化工大学理学院,辽宁 沈阳 110142
    2.沈阳化工大学技术过程故障诊断与安全性研究中心,辽宁 沈阳 110142
  • 收稿日期:2021-09-06 修回日期:2021-11-09 出版日期:2022-02-05 发布日期:2022-02-18
  • 通讯作者: 李元 E-mail:zhangcheng@syuct.edu.cn;li-yuan@mail.tsinghua.edu.cn
  • 作者简介:张成(1979—),男,博士,副教授,zhangcheng@syuct.edu.cn
  • 基金资助:
    国家自然科学基金项目(61673279);辽宁省自然科学基金项目(2019-MS-262);辽宁省教育厅基金项目(LJ2019013)

Fault detection and diagnosis method based on weighted statistical feature KICA

Cheng ZHANG1(),Lizhi PAN2,Yuan LI2()   

  1. 1.College of Science, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
    2.Research Center for Technical Process Fault Diagnosis and Safety, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
  • Received:2021-09-06 Revised:2021-11-09 Published:2022-02-05 Online:2022-02-18
  • Contact: Yuan LI E-mail:zhangcheng@syuct.edu.cn;li-yuan@mail.tsinghua.edu.cn

摘要:

针对核独立元分析(kernel independent component analysis, KICA)在非线性动态过程中对微小故障检测率低的问题,提出一种基于加权统计特征KICA(weighted statistical feature KICA, WSFKICA)的故障检测与诊断方法。首先,利用KICA从原始数据中捕获独立元数据和残差数据;然后,通过加权统计特征和滑动窗口获取改进统计特征数据集,并由此数据集构建统计量进行故障检测;最后,利用基于变量贡献图的方法进行过程故障诊断。与传统KICA统计量相比,所提方法的统计量对非线性动态过程中的微小故障具有更高的故障检测性能。应用该方法对一个数值例子和田纳西-伊斯曼(Tennessee-Eastman, TE)过程进行仿真测试,仿真结果显示出所提方法相对于独立元分析(ICA)、KICA、核主成分分析(kernel principal component analysis, KPCA)和统计局部核主成分分析(statistical local kernel principal component analysis, SLKPCA)检测的优势。

关键词: 独立元分析, 微小故障, 统计特征, 过程控制, 参数估值, 故障诊断, 动态仿真

Abstract:

Aiming at the problem of low early fault detection rate in the nonlinear dynamic process of kernel independent component analysis (KICA), a fault detection and diagnosis approach based on weighted statistical feature KICA (WSFKICA) is proposed. First, the independent component data and residual data are captured from the original data by using KICA. Then, the improved statistical feature data set is obtained by weighted statistical feature and sliding window, and the statistics is constructed from the data set for fault detection. Finally, the method based on contribution chart of monitored variables is used for process fault diagnosis. Compared with traditional KICA statistics, the statistics of the proposed approach has higher fault detection performance for incipient faults in nonlinear dynamic processes. The proposed approach is tested in a simulated case and in the Tennessee-Eastman (TE) process. The simulation results show that the proposed approach has an advantage over ICA, KICA, KPCA and statistical local kernel principal component analysis (SLKPCA).

Key words: independent component analysis, incipient faults, statistical feature, process control, parameter estimation, fault diagnosis, dynamic simulation

中图分类号: 

  • TP 277

图1

KICA独立元"

图2

WSFKICA流程示意图"

表1

参数?β?取不同值时的校验准确率"

β校验准确率平均值
RH
290.876.783.7
391.775.683.6
497.671.484.5
597.669.183.3
697.665.781.6

图3

ICA独立元"

图4

ICA故障检测结果"

图5

KICA独立元空间中样本"

图6

KICA故障检测结果"

图7

KPCA主元空间样本"

图8

KPCA故障检测结果"

图9

SLKPCA故障检测结果"

图10

WSFKICA特征数据中样本"

图11

WSFKICA故障检测结果"

图12

监控变量贡献图"

图13

监控变量"

表2

数值例子中各方法的故障检测率"

ICAKICAKPCASLKPCAWSFKICA
I2SPEI2SPEΤ2SPEΤ2SPERH
27.610.427.818.66.42.8868797.292.2

图14

TE过程流程"

表3

TE过程中各方法的故障检测率"

序号ICAKICAKPCAWSFKICA
I2SPEI2SPEΤ2SPERH
195.799.39898.799.199.399.7100
287.994.986.69494.494.79399.4
311.110.71.61.30.610.32198.6
499.999.999.999.999.999.9100100
534.719.940.6123.34399.6
6
799.999.999.999.999.999.9100100
886.688.686.485.987.689.490.493
98.718.292.47.34.313.938.388.4
108888.680.984.786.989.193.396.7
1189.498.795.196.698.498.499.4100
1232.474.133.135.940.47795.1100
139294.7193.694.194.394.996.7100
1483.998.997.998.798.798.9100100
1514.60.40.1001.954.499.4
1656.16.35.91.40.96.75.7
1781.184.976.38084.784.988.790.7
1852.962.8648.149.651.662.168.770.9
1993.79588.990.693.195.49498.7
2085.985.183.685.485.385.387.491.4
2156.46.45.71.60.97.312.4
2217.313.11.60.90.413.123.987.4
2316.712.611.418.74.73.744.9100
2479.387.770.183.98388.491.493.1
2594.193.483.788.3879598.1100
2662.387.158.177.385.688.688.195.1
2750.18759.758.471.69096.4100
2815.7132.40.40.6153.791.7

图15

ICA故障检测结果"

图16

KICA故障检测结果"

图17

KPCA故障检测结果"

图18

WSFKICA故障检测结果"

图19

故障27贡献图"

图20

反应堆温度和反应堆冷却水流量"

图21

故障10贡献图"

图22

汽提塔温度和汽提液产品流"

1 Kresta J V, MacGregor J F, Marlin T E. Multivariate statistical monitoring of process operating performance[J]. The Canadian Journal of Chemical Engineering, 1991, 69(1): 35-47.
2 刘强, 卓洁, 郎自强, 等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44(11): 1944-1956.
Liu Q, Zhuo J, Lang Z Q, et al. Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta Automatica Sinica, 2018, 44(11): 1944-1956.
3 孔祥玉, 曹泽豪, 杜柏阳, 等. 基于偏最小二乘的质量相关多模态故障检测技术[J]. 控制与决策, 2019, 34(12): 2547-2557.
Kong X Y, Cao Z H, Du B Y, et al. Quality-related multimodal fault detection technique based on partial least squares[J]. Control and Decision, 2019, 34(12): 2547-2557.
4 Yang Y W, Ma Y X, Song B, et al. An aligned mixture probabilistic principal component analysis for fault detection of multimode chemical processes[J]. Chinese Journal of Chemical Engineering, 2015, 23(8): 1357-1363.
5 冯立伟, 张成, 李元, 等. 基于双近邻标准化和PCA的多阶段过程故障检测[J]. 化工学报, 2018, 69(7): 3159-3166.
Feng L W, Zhang C, Li Y, et al. DLNS-PCA-based fault detection for multimode batch process[J]. CIESC Journal, 2018, 69(7): 3159-3166.
6 Chen M C, Hsu C C, Malhotra B, et al. An efficient ICA-DW-SVDD fault detection and diagnosis method for non-Gaussian processes[J]. International Journal of Production Research, 2016, 54(17): 5208-5218.
7 Yu J, Yoo J, Jang J, et al. A novel hybrid of auto-associative kernel regression and dynamic independent component analysis for fault detection in nonlinear multimode processes[J]. Journal of Process Control, 2018, 68: 129-144.
8 Teimoortashloo M, Sedigh A K. A modified independent component analysis-based fault detection method in plant-wide systems[J]. Control and Cybernetics, 2015, 44(2): 287-310.
9 Lee J M, Qin S J, Lee I B. Fault detection and diagnosis based on modified independent component analysis[J]. AIChE Journal, 2006, 52(10): 3501-3514.
10 Lee J M, Yoo C, Lee I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5): 467-485.
11 Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA[J]. Chemical Engineering Science, 2004, 59(24): 5897-5908.
12 赵忠盖, 刘飞. 一种基于核独立元分析的非线性过程监控方法[J]. 系统仿真学报, 2008, 20(20): 5585-5588.
Zhao Z G, Liu F. Nonlinear process monitoring method based on kernel independent component analysis[J]. Journal of System Simulation, 2008, 20(20): 5585-5588.
13 Lee J M, Qin S J, Lee I B. Fault detection of non-linear processes using kernel independent component analysis[J]. The Canadian Journal of Chemical Engineering, 2007, 85(4): 526-536.
14 Rashid M M, Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10910-10920.
15 周东华, 郭天序, 陈茂银. 基于多次移动平均的微小故障检测方法和装置: 103776480A[P]. 2014-05-07.
Zhou D H, Guo T X, Chen M Y. Small-fault detection method and device based on multiple moving average: 103776480A[P]. 2014-05-07.
16 邓佳伟, 邓晓刚, 曹玉苹, 等. 基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J]. 化工学报, 2019, 70(7): 2594-2605.
Deng J W, Deng X G, Cao Y P, et al. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA[J]. CIESC Journal, 2019, 70(7): 2594-2605.
17 Zheng K, Luo J F, Zhang Y, et al. Incipient fault detection of rolling bearing using maximum autocorrelation impulse harmonic to noise deconvolution and parameter optimized fast EEMD[J]. ISA Transactions, 2019, 89: 256-271.
18 Wang Y, Tse P W, Tang B P, et al. Kurtogram manifold learning and its application to rolling bearing weak signal detection[J]. Measurement, 2018, 127: 533-545.
19 Wang D, Tsui K L. Dynamic Bayesian wavelet transform: New methodology for extraction of repetitive transients[J]. Mechanical Systems and Signal Processing, 2017, 88: 137-144.
20 Li G Z, Tang G, Luo G G, et al. Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition[J]. Mechanical Systems and Signal Processing, 2019, 120: 83-97.
21 Safaeipour H, Forouzanfar M, Ramezani A. Incipient fault detection in nonlinear non-Gaussian noisy environment[J]. Measurement, 2021, 174: 109008.
22 吴强, 孔凡让, 何清波, 等. 基于小波变换和ICA的滚动轴承早期故障诊断[J]. 中国机械工程, 2012, 23(7): 835-840.
Wu Q, Kong F R, He Q B, et al. Early fault diagnosis of rolling element bearings based on wavelet transform and independent component analysis[J]. China Mechanical Engineering, 2012, 23(7): 835-840.
23 Basseville M. On-board component fault detection and isolation using the statistical local approach[J]. Automatica, 1998, 34(11): 1391-1415.
24 Kruger U, Kumar S, Littler T. Improved principal component monitoring using the local approach[J]. Automatica, 2007, 43(9): 1532-1542.
25 Ge Z Q, Yang C J, Song Z H. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9): 2245-2255.
26 Chen J, Liao C M. Dynamic process fault monitoring based on neural network and PCA[J]. Journal of Process Control, 2002, 12(2): 277-289.
27 Hyvärinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13(4/5): 411-430.
28 Odiowei P P, Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 103(1): 59-65.
29 Shen X, Agrawal S. Kernel density estimation for an anomaly based intrusion detection system[C]// Proceedings of the 2006 International Conference on Machine Learning. Models, Technologies & Applications. Las Vegas, Nevada, USA: DBLP, 2006.
30 邓晓刚, 田学民. 一种基于KPCA的非线性故障诊断方法[J]. 山东大学学报(工学版), 2005, 35(3): 103-106.
Deng X G, Tian X M. Nonlinear process fault diagnosis method using kernel principal component analysis[J]. Journal of Shandong University (Engineering Science), 2005, 35(3): 103-106.
31 Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255.
32 Bathelt A, Ricker N L, Jelali M. Revision of the Tennessee Eastman process model[J]. IFAC-PapersOnLine, 2015, 48(8): 309-314.
[1] 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
[2] 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119.
[3] 孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144.
[4] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[5] 戚子豪, 钟文琪, 陈曦, 周冠文, 赵小亮, 辛美静, 陈翼, 朱永长. 基于混合建模的水泥生料分解过程动态特性研究[J]. 化工学报, 2022, 73(5): 2039-2051.
[6] 王建松, 许锋, 罗雄麟. 化工过程多回路PID控制系统模式切换参数自整定[J]. 化工学报, 2022, 73(4): 1647-1657.
[7] 毕荣山, 韩智慧, 陶少辉, 孙晓岩, 项曙光. 基于热扩散核密度确定密度峰值法的历史工况识别[J]. 化工学报, 2022, 73(4): 1615-1622.
[8] 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758.
[9] 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105.
[10] 王佳星, 赵家睿, 李斯特, 付媛, 刘凤杰, 韦昌. 不同放汽阀流量特性对弹射过程的影响规律[J]. 化工学报, 2021, 72(S1): 318-325.
[11] 张弛, 李浩, 胡海涛, 朱翀, 张玉莹, 南国鹏, 舒悦. 基于自动特征工程的飞行器轴承故障诊断[J]. 化工学报, 2021, 72(S1): 430-436.
[12] 卢道铭, 唐钊艇, 范怡平, 卢春喜. 大差异颗粒分级再生设备的性能研究[J]. 化工学报, 2021, 72(8): 4184-4195.
[13] 孙浩然, 吕中原, 吴成云, 胡海涛. 机载补气增焓制冷系统动态仿真模型[J]. 化工学报, 2021, 72(5): 2484-2492.
[14] 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202.
[15] 谢苗苗, 张浪文, 谢巍. 复杂非线性系统的子系统分解方法[J]. 化工学报, 2021, 72(3): 1557-1566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!