化工学报 ›› 2022, Vol. 73 ›› Issue (2): 827-837.DOI: 10.11949/0438-1157.20211295
收稿日期:
2021-09-06
修回日期:
2021-11-09
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
李元
作者简介:
张成(1979—),男,博士,副教授,基金资助:
Cheng ZHANG1(),Lizhi PAN2,Yuan LI2()
Received:
2021-09-06
Revised:
2021-11-09
Online:
2022-02-05
Published:
2022-02-18
Contact:
Yuan LI
摘要:
针对核独立元分析(kernel independent component analysis, KICA)在非线性动态过程中对微小故障检测率低的问题,提出一种基于加权统计特征KICA(weighted statistical feature KICA, WSFKICA)的故障检测与诊断方法。首先,利用KICA从原始数据中捕获独立元数据和残差数据;然后,通过加权统计特征和滑动窗口获取改进统计特征数据集,并由此数据集构建统计量进行故障检测;最后,利用基于变量贡献图的方法进行过程故障诊断。与传统KICA统计量相比,所提方法的统计量对非线性动态过程中的微小故障具有更高的故障检测性能。应用该方法对一个数值例子和田纳西-伊斯曼(Tennessee-Eastman, TE)过程进行仿真测试,仿真结果显示出所提方法相对于独立元分析(ICA)、KICA、核主成分分析(kernel principal component analysis, KPCA)和统计局部核主成分分析(statistical local kernel principal component analysis, SLKPCA)检测的优势。
中图分类号:
张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837.
Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA[J]. CIESC Journal, 2022, 73(2): 827-837.
校验准确率 | 平均值 | ||
---|---|---|---|
R | H | ||
90.8 | 76.7 | 83.7 | |
91.7 | 75.6 | 83.6 | |
97.6 | 71.4 | 84.5 | |
97.6 | 69.1 | 83.3 | |
97.6 | 65.7 | 81.6 |
表1 参数?β?取不同值时的校验准确率
Table 1 Validation accuracy at different parameter β
校验准确率 | 平均值 | ||
---|---|---|---|
R | H | ||
90.8 | 76.7 | 83.7 | |
91.7 | 75.6 | 83.6 | |
97.6 | 71.4 | 84.5 | |
97.6 | 69.1 | 83.3 | |
97.6 | 65.7 | 81.6 |
ICA | KICA | KPCA | SLKPCA | WSFKICA | |||||
---|---|---|---|---|---|---|---|---|---|
27.6 | 10.4 | 27.8 | 18.6 | 6.4 | 2.8 | 86 | 87 | 97.2 | 92.2 |
表2 数值例子中各方法的故障检测率
Table 2 Fault detection rates of each method in simulated case
ICA | KICA | KPCA | SLKPCA | WSFKICA | |||||
---|---|---|---|---|---|---|---|---|---|
27.6 | 10.4 | 27.8 | 18.6 | 6.4 | 2.8 | 86 | 87 | 97.2 | 92.2 |
序号 | ICA | KICA | KPCA | WSFKICA | ||||
---|---|---|---|---|---|---|---|---|
1 | 95.7 | 99.3 | 98 | 98.7 | 99.1 | 99.3 | 99.7 | 100 |
2 | 87.9 | 94.9 | 86.6 | 94 | 94.4 | 94.7 | 93 | 99.4 |
3 | 11.1 | 10.7 | 1.6 | 1.3 | 0.6 | 10.3 | 21 | 98.6 |
4 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 100 | 100 |
5 | 34.7 | 19.9 | 4 | 0.6 | 1 | 23.3 | 43 | 99.6 |
6 | — | — | — | — | — | — | — | — |
7 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 100 | 100 |
8 | 86.6 | 88.6 | 86.4 | 85.9 | 87.6 | 89.4 | 90.4 | 93 |
9 | 8.7 | 18.29 | 2.4 | 7.3 | 4.3 | 13.9 | 38.3 | 88.4 |
10 | 88 | 88.6 | 80.9 | 84.7 | 86.9 | 89.1 | 93.3 | 96.7 |
11 | 89.4 | 98.7 | 95.1 | 96.6 | 98.4 | 98.4 | 99.4 | 100 |
12 | 32.4 | 74.1 | 33.1 | 35.9 | 40.4 | 77 | 95.1 | 100 |
13 | 92 | 94.71 | 93.6 | 94.1 | 94.3 | 94.9 | 96.7 | 100 |
14 | 83.9 | 98.9 | 97.9 | 98.7 | 98.7 | 98.9 | 100 | 100 |
15 | 14.6 | 0.4 | 0.1 | 0 | 0 | 1.9 | 54.4 | 99.4 |
16 | 5 | 6.1 | 6.3 | 5.9 | 1.4 | 0.9 | 6.7 | 5.7 |
17 | 81.1 | 84.9 | 76.3 | 80 | 84.7 | 84.9 | 88.7 | 90.7 |
18 | 52.9 | 62.86 | 48.1 | 49.6 | 51.6 | 62.1 | 68.7 | 70.9 |
19 | 93.7 | 95 | 88.9 | 90.6 | 93.1 | 95.4 | 94 | 98.7 |
20 | 85.9 | 85.1 | 83.6 | 85.4 | 85.3 | 85.3 | 87.4 | 91.4 |
21 | 5 | 6.4 | 6.4 | 5.7 | 1.6 | 0.9 | 7.3 | 12.4 |
22 | 17.3 | 13.1 | 1.6 | 0.9 | 0.4 | 13.1 | 23.9 | 87.4 |
23 | 16.7 | 12.6 | 11.4 | 18.7 | 4.7 | 3.7 | 44.9 | 100 |
24 | 79.3 | 87.7 | 70.1 | 83.9 | 83 | 88.4 | 91.4 | 93.1 |
25 | 94.1 | 93.4 | 83.7 | 88.3 | 87 | 95 | 98.1 | 100 |
26 | 62.3 | 87.1 | 58.1 | 77.3 | 85.6 | 88.6 | 88.1 | 95.1 |
27 | 50.1 | 87 | 59.7 | 58.4 | 71.6 | 90 | 96.4 | 100 |
28 | 15.7 | 13 | 2.4 | 0.4 | 0.6 | 15 | 3.7 | 91.7 |
表3 TE过程中各方法的故障检测率
Table 3 Fault detection rates of each method in TE process
序号 | ICA | KICA | KPCA | WSFKICA | ||||
---|---|---|---|---|---|---|---|---|
1 | 95.7 | 99.3 | 98 | 98.7 | 99.1 | 99.3 | 99.7 | 100 |
2 | 87.9 | 94.9 | 86.6 | 94 | 94.4 | 94.7 | 93 | 99.4 |
3 | 11.1 | 10.7 | 1.6 | 1.3 | 0.6 | 10.3 | 21 | 98.6 |
4 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 100 | 100 |
5 | 34.7 | 19.9 | 4 | 0.6 | 1 | 23.3 | 43 | 99.6 |
6 | — | — | — | — | — | — | — | — |
7 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 100 | 100 |
8 | 86.6 | 88.6 | 86.4 | 85.9 | 87.6 | 89.4 | 90.4 | 93 |
9 | 8.7 | 18.29 | 2.4 | 7.3 | 4.3 | 13.9 | 38.3 | 88.4 |
10 | 88 | 88.6 | 80.9 | 84.7 | 86.9 | 89.1 | 93.3 | 96.7 |
11 | 89.4 | 98.7 | 95.1 | 96.6 | 98.4 | 98.4 | 99.4 | 100 |
12 | 32.4 | 74.1 | 33.1 | 35.9 | 40.4 | 77 | 95.1 | 100 |
13 | 92 | 94.71 | 93.6 | 94.1 | 94.3 | 94.9 | 96.7 | 100 |
14 | 83.9 | 98.9 | 97.9 | 98.7 | 98.7 | 98.9 | 100 | 100 |
15 | 14.6 | 0.4 | 0.1 | 0 | 0 | 1.9 | 54.4 | 99.4 |
16 | 5 | 6.1 | 6.3 | 5.9 | 1.4 | 0.9 | 6.7 | 5.7 |
17 | 81.1 | 84.9 | 76.3 | 80 | 84.7 | 84.9 | 88.7 | 90.7 |
18 | 52.9 | 62.86 | 48.1 | 49.6 | 51.6 | 62.1 | 68.7 | 70.9 |
19 | 93.7 | 95 | 88.9 | 90.6 | 93.1 | 95.4 | 94 | 98.7 |
20 | 85.9 | 85.1 | 83.6 | 85.4 | 85.3 | 85.3 | 87.4 | 91.4 |
21 | 5 | 6.4 | 6.4 | 5.7 | 1.6 | 0.9 | 7.3 | 12.4 |
22 | 17.3 | 13.1 | 1.6 | 0.9 | 0.4 | 13.1 | 23.9 | 87.4 |
23 | 16.7 | 12.6 | 11.4 | 18.7 | 4.7 | 3.7 | 44.9 | 100 |
24 | 79.3 | 87.7 | 70.1 | 83.9 | 83 | 88.4 | 91.4 | 93.1 |
25 | 94.1 | 93.4 | 83.7 | 88.3 | 87 | 95 | 98.1 | 100 |
26 | 62.3 | 87.1 | 58.1 | 77.3 | 85.6 | 88.6 | 88.1 | 95.1 |
27 | 50.1 | 87 | 59.7 | 58.4 | 71.6 | 90 | 96.4 | 100 |
28 | 15.7 | 13 | 2.4 | 0.4 | 0.6 | 15 | 3.7 | 91.7 |
1 | Kresta J V, MacGregor J F, Marlin T E. Multivariate statistical monitoring of process operating performance[J]. The Canadian Journal of Chemical Engineering, 1991, 69(1): 35-47. |
2 | 刘强, 卓洁, 郎自强, 等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44(11): 1944-1956. |
Liu Q, Zhuo J, Lang Z Q, et al. Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta Automatica Sinica, 2018, 44(11): 1944-1956. | |
3 | 孔祥玉, 曹泽豪, 杜柏阳, 等. 基于偏最小二乘的质量相关多模态故障检测技术[J]. 控制与决策, 2019, 34(12): 2547-2557. |
Kong X Y, Cao Z H, Du B Y, et al. Quality-related multimodal fault detection technique based on partial least squares[J]. Control and Decision, 2019, 34(12): 2547-2557. | |
4 | Yang Y W, Ma Y X, Song B, et al. An aligned mixture probabilistic principal component analysis for fault detection of multimode chemical processes[J]. Chinese Journal of Chemical Engineering, 2015, 23(8): 1357-1363. |
5 | 冯立伟, 张成, 李元, 等. 基于双近邻标准化和PCA的多阶段过程故障检测[J]. 化工学报, 2018, 69(7): 3159-3166. |
Feng L W, Zhang C, Li Y, et al. DLNS-PCA-based fault detection for multimode batch process[J]. CIESC Journal, 2018, 69(7): 3159-3166. | |
6 | Chen M C, Hsu C C, Malhotra B, et al. An efficient ICA-DW-SVDD fault detection and diagnosis method for non-Gaussian processes[J]. International Journal of Production Research, 2016, 54(17): 5208-5218. |
7 | Yu J, Yoo J, Jang J, et al. A novel hybrid of auto-associative kernel regression and dynamic independent component analysis for fault detection in nonlinear multimode processes[J]. Journal of Process Control, 2018, 68: 129-144. |
8 | Teimoortashloo M, Sedigh A K. A modified independent component analysis-based fault detection method in plant-wide systems[J]. Control and Cybernetics, 2015, 44(2): 287-310. |
9 | Lee J M, Qin S J, Lee I B. Fault detection and diagnosis based on modified independent component analysis[J]. AIChE Journal, 2006, 52(10): 3501-3514. |
10 | Lee J M, Yoo C, Lee I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5): 467-485. |
11 | Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA[J]. Chemical Engineering Science, 2004, 59(24): 5897-5908. |
12 | 赵忠盖, 刘飞. 一种基于核独立元分析的非线性过程监控方法[J]. 系统仿真学报, 2008, 20(20): 5585-5588. |
Zhao Z G, Liu F. Nonlinear process monitoring method based on kernel independent component analysis[J]. Journal of System Simulation, 2008, 20(20): 5585-5588. | |
13 | Lee J M, Qin S J, Lee I B. Fault detection of non-linear processes using kernel independent component analysis[J]. The Canadian Journal of Chemical Engineering, 2007, 85(4): 526-536. |
14 | Rashid M M, Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10910-10920. |
15 | 周东华, 郭天序, 陈茂银. 基于多次移动平均的微小故障检测方法和装置: 103776480A[P]. 2014-05-07. |
Zhou D H, Guo T X, Chen M Y. Small-fault detection method and device based on multiple moving average: 103776480A[P]. 2014-05-07. | |
16 | 邓佳伟, 邓晓刚, 曹玉苹, 等. 基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J]. 化工学报, 2019, 70(7): 2594-2605. |
Deng J W, Deng X G, Cao Y P, et al. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA[J]. CIESC Journal, 2019, 70(7): 2594-2605. | |
17 | Zheng K, Luo J F, Zhang Y, et al. Incipient fault detection of rolling bearing using maximum autocorrelation impulse harmonic to noise deconvolution and parameter optimized fast EEMD[J]. ISA Transactions, 2019, 89: 256-271. |
18 | Wang Y, Tse P W, Tang B P, et al. Kurtogram manifold learning and its application to rolling bearing weak signal detection[J]. Measurement, 2018, 127: 533-545. |
19 | Wang D, Tsui K L. Dynamic Bayesian wavelet transform: New methodology for extraction of repetitive transients[J]. Mechanical Systems and Signal Processing, 2017, 88: 137-144. |
20 | Li G Z, Tang G, Luo G G, et al. Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition[J]. Mechanical Systems and Signal Processing, 2019, 120: 83-97. |
21 | Safaeipour H, Forouzanfar M, Ramezani A. Incipient fault detection in nonlinear non-Gaussian noisy environment[J]. Measurement, 2021, 174: 109008. |
22 | 吴强, 孔凡让, 何清波, 等. 基于小波变换和ICA的滚动轴承早期故障诊断[J]. 中国机械工程, 2012, 23(7): 835-840. |
Wu Q, Kong F R, He Q B, et al. Early fault diagnosis of rolling element bearings based on wavelet transform and independent component analysis[J]. China Mechanical Engineering, 2012, 23(7): 835-840. | |
23 | Basseville M. On-board component fault detection and isolation using the statistical local approach[J]. Automatica, 1998, 34(11): 1391-1415. |
24 | Kruger U, Kumar S, Littler T. Improved principal component monitoring using the local approach[J]. Automatica, 2007, 43(9): 1532-1542. |
25 | Ge Z Q, Yang C J, Song Z H. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9): 2245-2255. |
26 | Chen J, Liao C M. Dynamic process fault monitoring based on neural network and PCA[J]. Journal of Process Control, 2002, 12(2): 277-289. |
27 | Hyvärinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13(4/5): 411-430. |
28 | Odiowei P P, Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 103(1): 59-65. |
29 | Shen X, Agrawal S. Kernel density estimation for an anomaly based intrusion detection system[C]// Proceedings of the 2006 International Conference on Machine Learning. Models, Technologies & Applications. Las Vegas, Nevada, USA: DBLP, 2006. |
30 | 邓晓刚, 田学民. 一种基于KPCA的非线性故障诊断方法[J]. 山东大学学报(工学版), 2005, 35(3): 103-106. |
Deng X G, Tian X M. Nonlinear process fault diagnosis method using kernel principal component analysis[J]. Journal of Shandong University (Engineering Science), 2005, 35(3): 103-106. | |
31 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
32 | Bathelt A, Ricker N L, Jelali M. Revision of the Tennessee Eastman process model[J]. IFAC-PapersOnLine, 2015, 48(8): 309-314. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[7] | 明迁, 高逸, 胡剑, 李盛杰, 王金江. 热交换器泄漏故障虚拟感知方法研究[J]. 化工学报, 2023, 74(4): 1836-1846. |
[8] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[9] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[10] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[11] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[12] | 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962. |
[13] | 杨明辉, 刘晓月, 邓晓刚, 廖明燕, 侯春望. 基于加权概率CVDA的动态化工系统微小故障检测[J]. 化工学报, 2022, 73(9): 3963-3972. |
[14] | 杨静, 林振康, 汤君, 樊铖, 孙克宁. 电池系统的故障特征以及多故障的诊断与识别[J]. 化工学报, 2022, 73(8): 3394-3405. |
[15] | 孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||