化工学报 ›› 2012, Vol. 63 ›› Issue (10): 3196-3201.DOI: 10.3969/j.issn.0438-1157.2012.10.027

• 过程系统工程 • 上一篇    下一篇

基于对称Alpha稳定分布概率神经网络的铝电解槽况诊断

易军1, 李太福1,2, 田应甫3, 姚立忠4, 侯杰2   

  1. 1. 重庆科技学院电气与信息工程学院, 重庆 401331;
    2. 重庆大学自动化学院, 重庆 400044;
    3. 重庆天泰铝业有限公司, 重庆 401328;
    4. 西安石油大学电子工程学院, 陕西 西安 710065
  • 收稿日期:2012-02-18 修回日期:2012-03-29 出版日期:2012-10-05 发布日期:2012-10-05
  • 通讯作者: 易军
  • 作者简介:易军(1973- ),男,博士,讲师。
  • 基金资助:

    国家自然科学基金项目(61174015);重庆市自然科学基金重点项目(CSTC2012JJB40006);重庆市教委科学技术研究项目(KJ121410)重庆科技学院校内科研基金项目(CK2011B04)。

Diagnosis of status of aluminum reduction cells based on symmetric Alpha-stable probabilistic distribution neural network

YI Jun1, LI Taifu1,2, TIAN Yingfu3, YAO Lizhong4, HOU Jie2   

  1. 1. School of Electronic & Information Engineering, Chongqing University of Science and Technology, Chongqing 401331, China;
    2. School of Automation, Chongqing University, Chongqing 400044, China;
    3. Chongqing Tiantai Aluminum Cor. Ltd., Chongqing 401328, China;
    4. School of Electronic Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi, China
  • Received:2012-02-18 Revised:2012-03-29 Online:2012-10-05 Published:2012-10-05
  • Supported by:

    supported by the National Natural Science Foundation of China(61174015),Natural Science Foundation Project of Chongqing CSTC(CSTC2012jjb40006),Science and Technology Project of CQJW(KJ121410)and Campus Research Foundation of University of Science and Technology of Chongqing(CK2011B04).

摘要: 在铝电解槽非稳态情况下,槽参数易发生局部突变,呈现非高斯概率分布,且各种槽参数相关性较强,无法满足概率神经网络中训练样本必须服从独立同分布的假设条件,影响槽况诊断的精确度。提出一种基于对称Alpha稳定分布概率神经网络的铝电解槽况诊断方法,利用其对非高斯分布数据的良好近似拟合能力,改进模式层的径向基函数,提高概率神经网络对槽参数局部突变的适应性。通过取自某厂170 kA大型预焙槽的样本进行检验表明,该方法能够对5种槽况做出正确的诊断,具有较强的分类精度和收敛速度。

关键词: 对称Alpha稳定分布, 概率神经网络, 故障诊断, 铝电解槽, 概率密度函数

Abstract: The numerous variables in non-steady state of aluminum reduction cells are non-Gaussian and impulsive.Due to correlation of variables,the condition that training samples must be independent and identically distributed is not fulfilled.For these reasons,it is too hard to diagnose the status of aluminum reduction cells in application.A diagnosis method for the status of aluminum reduction cells based on symmetric Alpha-stable(SαS)probabilistic distribution neural network was proposed.In the method,probability density function of SαS was introduced as radial basis function of model layer into the probabilistic neural network because such function had good fitting ability to non-Gaussian distributed data.And it also improved neural network approximation ability of partial pulse burst.By using 40 groups data of 170 kA operating aluminum smelter from a factory,this method could diagnose five statuses of aluminum reduction cells correctly and had not only stronger adaptability and robustness,but also approximation reliability and fast convergence.

Key words: symmetric Alpha-stable distribution, probabilistic neural network, fault diagnosis, aluminum reduction cell, probability density function

中图分类号: