[1] |
Fortuna L, Graziani S, Rizzo A, Xibilia M G. Soft Sensors for Monitoring and Control of Industrial Processes[M]. Berlin: Springer- Verlag, 2007: 1-10
|
[2] |
Haimi H, Mulas M, Corona F, Vahala R. Data-derived soft-sensors for biological wastewater treatment plants: an overview [J]. Environmental Modelling and Software, 2013, 47: 88-107
|
[3] |
Rani A, Singh V, Gupta J R P. Development of soft sensor for neural network based control of distillation column [J]. ISA Transactions, 2013, 52(3): 438-449
|
[4] |
Fu Y F. A dynamic soft-sensor modeling method based on FC-GP for 4-CBA content//IEEE Instrumentation and Measurement Technology Conference[C]. 2011: 1-4
|
[5] |
Galicia H J, He Q P, Wang J. Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control [J]. Control Engineering Practice, 2012, 20(8): 747-760
|
[6] |
Shang C, Gao X Q, Yang F, Huang D X. Novel Bayesian framework for dynamic soft sensor based on support vector machine with finite impulse response [J]. IEEE Transaction on Control Systems Technology, 2013, 22(4): 1-8
|
[7] |
Fortuna L, Graziani S, Xibilia M G. Soft sensors for product quality monitoring in debutanizer distillation columns [J]. Control Engineering Practice, 2005, 13(4): 499-508
|
[8] |
Komulainen T, Sourander M, Jämsä-Jounela S L. An online application of dynamic PLS to a dearomatization process [J]. Computers and Chemical Engineering, 2004, 28(12): 2611-2619
|
[9] |
Zhang J, Jin Q B, Xu Y M. Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks [J]. Chemical Engineering and Technology, 2006, 29(4): 442-448
|
[10] |
Jr O L, Nunes U, Araújo R, Schnitman L. Applications of information theory, genetic algorithms, and neural models to predict oil flow [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(7): 2870-2885
|
[11] |
Souza F, Araújo R. Variable and time-lag selection using empirical data// IEEE 16th Conference on Emerging Technologies and Factory Automation[C]. 2011: 1-8
|
[12] |
Souza F, Santos P, Araújo R. Variable and delay selection using neural networks and mutual information for data-driven soft sensors //IEEE Conference on Emerging Technologies and Factory Automation[C]. 2010: 1-8
|
[13] |
Lou H C, Su H Y, Xie L, Gu Y, Rong G. Inferential model for industrial polypropylene melt index prediction with embedded priori knowledge and delay estimation [J]. Industrial and Engineering Chemistry Research, 2012, 51(25): 8510-8525
|
[14] |
Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information [J]. Physical Review E, 2004, 69(6): 066138
|
[15] |
Doquire G, Verleysen M. A Performance Evaluation of Mutual Information Estimators for Multivariate Feature Selection[M]. Berlin: Springer-Verlag, 2013: 51-63
|
[16] |
Wang Junyan(王钧炎), Huang Dexian(黄德先). Time delay estimation of soft sensor model based on hybrid differential evolution algorithm [J]. Journal of Chemical Industry and Engineering(China) (化工学报), 2008, 59(8): 2058-2064
|
[17] |
Qian Xiaoshan(钱晓山), Yang Chunhua(阳春华), Xu Lisha(徐丽莎). Soft sensor of sodium aluminate solution concentration based on improved differential evolution algorithm and LSSVM [J]. CIESC Journal (化工学报), 2013, 64(5): 1704-1709
|
[18] |
Qin S J. Survey on data-driven industrial process monitoring and diagnosis [J]. Annual Reviews in Control, 2012, 36(2): 220-234
|
[19] |
Wang Qiang(王强), Tian Xuemin(田学民). Soft sensing based on KPCA and LSSVM [J]. CIESC Journal (化工学报), 2011, 62(10): 2813-2817
|