化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1054-1062.DOI: 10.11949/0438-1157.20211463
收稿日期:
2021-10-13
修回日期:
2022-01-08
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
丁国良
作者简介:
高欢(1997—),女,硕士研究生,Huan GAO(),Guoliang DING(),Faxian ZHOU,Dawei ZHUANG
Received:
2021-10-13
Revised:
2022-01-08
Online:
2022-03-15
Published:
2022-03-14
Contact:
Guoliang DING
摘要:
制冷系统中的有效充注量的计算依赖于制冷剂在润滑油中的动态析出特性。本文的目的是通过实验研究制冷剂在润滑油中析出时质量分数随时间变化的特性,并建立预测制冷剂质量分数动态变化的数学模型。实验方面,采用了外压骤降时制冷剂会析出的原理,搭建了动态溶析实验台,通过测量溶液折射率得到了R410A制冷剂在POE68润滑油中析出时质量分数的实时变化。实验结果表明,随着压力的骤降,制冷剂几乎同步析出,质量分数呈现急速下降、缓慢下降并最后稳定的动态变化趋势;随着压降幅度的增大,制冷剂最大析出速率增大,质量分数每秒最大下降16.4%,制冷剂质量分数稳定的时间变短,最短仅有4 s。建模方面,基于一维质量扩散原理,开发了能够预测制冷剂质量分数随时间变化的析出模型。模型结果表明,质量分数预测值与实验数据的平均绝对误差小于5%,平均相对误差小于25%。
中图分类号:
高欢, 丁国良, 周发贤, 庄大伟. R410A制冷剂在润滑油中的动态析出特性的研究[J]. 化工学报, 2022, 73(3): 1054-1062.
Huan GAO, Guoliang DING, Faxian ZHOU, Dawei ZHUANG. Research on dynamic separation characteristics of R410A refrigerant with lubricant[J]. CIESC Journal, 2022, 73(3): 1054-1062.
图1 实验装置1—制冷剂充注口; 2,3 —温度传感器; 4,13—压力传感器; 5 —视镜玻璃; 6— 激光反射镜; 7 —步进电机; 8 —激光位移传感器; 9— 线性模组; 10— 润滑油充注口及排液口; 11— 测试容器; 12,16— 阀门; 14 —制冷剂充注口; 15— 压力调节罐; 17 —真空泵
Fig.1 Experimental rig
实验序号 | 蒸发温度/℃ | 总的制冷剂质量分数/% |
---|---|---|
1 | 10.3 | 55.3 |
2 | 9.6 | 61.0 |
3 | 7.4 | 56.1 |
4 | 5.2 | 58.9 |
5 | 4.7 | 58.1 |
6 | 4.3 | 60.1 |
表1 实验工况
Table 1 Experimental conditions
实验序号 | 蒸发温度/℃ | 总的制冷剂质量分数/% |
---|---|---|
1 | 10.3 | 55.3 |
2 | 9.6 | 61.0 |
3 | 7.4 | 56.1 |
4 | 5.2 | 58.9 |
5 | 4.7 | 58.1 |
6 | 4.3 | 60.1 |
系数 | 取值 |
---|---|
a | -9.49×10 |
b | 6.72×10-1 |
c | -1.15×10-3 |
d | 1.75×102 |
e | -1.21 |
f | 2.05×10-3 |
表2 制冷剂气相压力关联式的系数取值
Table 2 Correlation coefficients of refrigerant vapor phase pressure
系数 | 取值 |
---|---|
a | -9.49×10 |
b | 6.72×10-1 |
c | -1.15×10-3 |
d | 1.75×102 |
e | -1.21 |
f | 2.05×10-3 |
实验 序号 | 压力差/MPa | 析出 模式 | D/ (10-6 m2/s) | 平均绝对误差/% | 平均相对误差/% |
---|---|---|---|---|---|
1 | 0.52 | 缓慢 | 6.2 | 4.1 | 22.3 |
2 | 0.55 | 缓慢 | 6.4 | 4.1 | 18.3 |
3 | 0.63 | 缓慢 | 6.7 | 2.7 | 15.3 |
4 | 0.69 | 缓慢 | 7.5 | 4.2 | 20.3 |
5 | 0.70 | 快速 | 68 | 2.9 | 24.2 |
6 | 0.71 | 快速 | 73 | 1.8 | 13.1 |
表3 制冷剂质量分数计算公式系数与预测结果误差
Table 3 Coefficient of refrigerant mass fraction calculation formula and the prediction error
实验 序号 | 压力差/MPa | 析出 模式 | D/ (10-6 m2/s) | 平均绝对误差/% | 平均相对误差/% |
---|---|---|---|---|---|
1 | 0.52 | 缓慢 | 6.2 | 4.1 | 22.3 |
2 | 0.55 | 缓慢 | 6.4 | 4.1 | 18.3 |
3 | 0.63 | 缓慢 | 6.7 | 2.7 | 15.3 |
4 | 0.69 | 缓慢 | 7.5 | 4.2 | 20.3 |
5 | 0.70 | 快速 | 68 | 2.9 | 24.2 |
6 | 0.71 | 快速 | 73 | 1.8 | 13.1 |
1 | 张朝仕, 黄展枫, 黄钗宜, 等. 制冷剂/润滑油气液相平衡实验系统的研制与验证[J]. 制冷学报, 2020, 41(5): 42-47. |
Zhang C S, Huang Z F, Huang C Y, et al. Development and verification of a vapor-liquid equilibrium experimental system for refrigerants/lubricants[J]. Journal of Refrigeration, 2020, 41(5): 42-47. | |
2 | 史正良, 郭小青, 胡余生, 等. 冷冻机油与制冷剂的溶解特性研究[J]. 制冷与空调, 2017, 17(9): 30-33. |
Shi Z L, Guo X Q, Hu Y S, et al. Research on miscibility characteristics of refrigeration oil and refrigerant[J]. Refrigeration and Air-Conditioning, 2017, 17(9): 30-33. | |
3 | 张旭光, 任福忱, 白犇. 小型家用空调器夏季启停机过程动态特性研究[J]. 山西建筑, 2013, 39(15): 97-99. |
Zhang X G, Ren F C, Bai B. The dynamic performance research of the small household air-condition in the process of start-up and stop in summer[J]. Shanxi Architecture, 2013, 39(15): 97-99. | |
4 | 林恩新, 丁国良, 赵丹, 等. 基于双膜理论润滑油溶解制冷剂质量计算模型[J]. 流体机械, 2011, 39(9): 75-77. |
Lin E X, Ding G L, Zhao D, et al. Dynamic releasing model for refrigerant dissolved in compressor lubricant oil[J]. Fluid Machinery, 2011, 39(9): 75-77. | |
5 | 崔晓钰, 吴献忠, 李美玲. 三元混合制冷工质变组成容量控制空调[J]. 化工学报, 2006, 57(3): 515-520. |
Cui X Y, Wu X Z, Li M L. Varying composition capacity control air conditioning system with ternary refrigerant mixture[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(3): 515-520. | |
6 | 张发勇, 刘金平, 许雄文. 制冷工况下降膜冷凝器的制冷剂积存特性与传热性能[J]. 化工学报, 2015, 66(12): 5012-5021. |
Zhang F Y, Liu J P, Xu X W. Characteristics of refrigerant hold-up and heat transfer performance of falling film condenser under refrigerating condition[J]. CIESC Journal, 2015, 66(12): 5012-5021. | |
7 | Jin S H, Hrnjak P. Refrigerant and lubricant charge in air condition heat exchangers: experimentally validated model[J]. International Journal of Refrigeration, 2016, 67: 395-407. |
8 | Fukuta M, Yanagisawa T, Omura M, et al. Mixing and separation characteristics of isobutane with refrigeration oil[J]. International Journal of Refrigeration, 2005, 28(7): 997-1005. |
9 | Fortkamp F P, Barbosa J R. Refrigerant desorption and foaming in mixtures of HFC-134a and HFO-1234yf and a polyol ester lubricating oil[J]. International Journal of Refrigeration, 2015, 53: 69-79. |
10 | Jonsson U, Höglund E. Determination of viscosities of oil-refrigerant mixtures at equilibrium by means of film thickness measurements[J]. Ashrae Transactions, 1993, 99: 1129-1136. |
11 | Fukuta M, Yanagisawa T, Miyamura S, et al. Concentration measurement of refrigerant/refrigeration oil mixture by refractive index[J]. International Journal of Refrigeration, 2004, 27(4): 346-352. |
12 | Fukuta M, Yanagisawa T, Shimasaki M, et al. Real-time measurement of mixing ratio of refrigerant/refrigeration oil mixture[J]. International Journal of Refrigeration, 2006, 29(7): 1058-1065. |
13 | Fukuta M, Ito M, Yanagisawa T, et al. Refrigerant concentration measurement at compressor oil sump by refractive index (concentration of R410A in PVE oil)[J]. International Journal of Refrigeration, 2010, 33(2): 390-397. |
14 | Newell T A. In situ refractometry for concentration measurements in refrigeration systems[J]. HVAC&R Research, 1996, 2(3): 247-255. |
15 | Kutsuna K, Inoue Y, Mizutani T, et al. Real time oil concentration measurement in automotive air conditioning by ultraviolet light absorption[J]. SAE Transactions, 1991, 100: 315-322. |
16 | Suzuki S, Fujisawa Y, Nakazawa S, et al. Measuring method of oil circulation ratio using light absorption[J]. ASHRAE Transactions, 2011, 8(1): 25-34. |
17 | Baustian J J, Pate M, Bergles A. Measuring the concentration of a flowing oil-refrigerant mixture with a bypass viscometer[J]. ASHRAE Transactions, 1988, 94: 588-601. |
18 | Lebreton J M, Vuillame L, Morvan E, et al. Real-time measurement of the oil concentration in liquid refrigerant flowing inside a refrigeration machine[C]//Proc. 15th Int. Compr. Eng. Conf. Purdue, 2000: 319-326. |
19 | Baustian J J, Pate M, Bergles A. Measuring the concentration of a flowing oil-refrigerant mixture with a vibrating U-tube densimeter[J]. ASHRAE Transactions, 1988, 94: 571-587. |
20 | Fukuta M, Yanagishwa T, Ogi Y, et al. Measurement of concentration of refrigerant in refrigeration oil by capacitance sensor[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2011, 16: 239-248. |
21 | Yokozeki A. Time-dependent behavior of gas absorption in lubricant oil[J]. International Journal of Refrigeration, 2002, 25(6): 695-704. |
22 | Gessner T R, Barbosa J R. Modeling absorption of pure refrigerants and refrigerant mixtures in lubricant oil[J]. International Journal of Refrigeration, 2006, 29(5): 773-780. |
23 | Barbosa J R, Ortolan M A. Experimental and theoretical analysis of refrigerant absorption in lubricant oil[J]. HVAC&R Research, 2008, 14(1): 141-158. |
24 | Marcelino Neto M A, França R M, Barbosa J R. Convection-driven absorption of R-1234yf in lubricating oil[J]. International Journal of Refrigeration, 2014, 44: 151-160. |
25 | Marcelino Neto M A, Barbosa J R. Absorption of isobutane (R-600a) in lubricant oil[J]. Chemical Engineering Science, 2011, 66(9): 1906-1915. |
26 | Barbosa J R, Thoma S M, Marcelino Neto M A. Prediction of refrigerant absorption and onset of natural convection in lubricant oil[J]. International Journal of Refrigeration, 2008, 31(7): 1231-1240. |
27 | 魏文建, 丁国良, 胡海涛, 等. R410A制冷剂和POE VG68润滑油混合物热物性模型[J]. 制冷学报, 2007, 28(1): 37-44. |
Wei W J, Ding G L, Hu H T, et al. Models of thermodynamic and transport properties of POE VG68 and R410A/POE VG68 mixture[J]. Journal of Refrigeration, 2007, 28(1): 37-44. | |
28 | Youbi-Idrissi M, Bonjour J, Terrier M F, et al. Oil presence in an evaporator: experimental validation of a refrigerant/oil mixture enthalpy calculation model[J]. International Journal of Refrigeration, 2004, 27(3): 215-224. |
29 | Cavestri R C . Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Final report[R]. Office of Scientific and Technical Information (OSTI), 1995. |
30 | Burton C M, Jacobi A M. Vapor-liquid equilibria for R-32 and R-410A mixed with a polyol ester: non-ideality and local composition modeling: ACRC TR-117[R]. Illinois: Air Conditioning and Refrigeration Center, 1997. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[3] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[4] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[5] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[6] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[7] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[8] | 席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949. |
[9] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[10] | 刘潜, 张香兰, 李志平, 李玉龙, 韩梦醒. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928. |
[11] | 艾承燚, 乔金硕, 王振华, 孙旺, 孙克宁. 原位析出纳米合金的PrBaFe2O6-δ 基阳极构筑及其在固体碳燃料电池中的应用研究[J]. 化工学报, 2022, 73(8): 3708-3719. |
[12] | 解文潇, 贾胜坤, 张会书, 罗祎青, 袁希钢. 受限空间内浮升气泡与液体间传质行为实验研究[J]. 化工学报, 2022, 73(7): 2902-2911. |
[13] | 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943. |
[14] | 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
[15] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||