化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1472-1484.DOI: 10.11949/j.issn.0438-1157.20181240
吴菁1,3(),刘乙奇1,2,刘坚4,黄道平1(),邱禹1,于广平4
收稿日期:
2018-10-18
修回日期:
2018-12-25
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
黄道平
作者简介:
<named-content content-type="corresp-name">吴菁</named-content>(1988—),女,博士研究生,讲师,<email>ipicq@163.com</email>|黄道平(1961—),男,博士,教授,<email>audhuang@scut.edu.cn</email>
基金资助:
Jing WU1,3(),Yiqi LIU1,2,Jian LIU4,Daoping HUANG1(),Yu QIU1,Guangping YU4
Received:
2018-10-18
Revised:
2018-12-25
Online:
2019-04-05
Published:
2019-04-05
Contact:
Daoping HUANG
摘要:
针对污水处理过程中存在的多变量耦合、强非线性以及参数时变等问题,提出基于多核学习相关向量机的软测量建模方法,并采用粒子群算法对多核权重以及核参数进行优化。同时,引入时间差分(time difference)方法改进多核相关向量机的动态特性。为了验证所提模型的有效性,通过一仿真案例与单核相关向量机、多层前馈神经网络和基于遗传算法的支持向量机进行对比研究。结果表明,所提模型具有更好的预测效果。最后,对模型的鲁棒性在数据漂移和异常的场景下进行了讨论。
中图分类号:
吴菁, 刘乙奇, 刘坚, 黄道平, 邱禹, 于广平. 基于动态多核相关向量机的软测量建模研究[J]. 化工学报, 2019, 70(4): 1472-1484.
Jing WU, Yiqi LIU, Jian LIU, Daoping HUANG, Yu QIU, Guangping YU. Study on the soft sensor of multi-kernel relevance vector machine based on time difference[J]. CIESC Journal, 2019, 70(4): 1472-1484.
序号 | 变量描述 | 符号 | 序号 | 变量描述 | 符号 |
---|---|---|---|---|---|
1 | 入水悬浮固体浓度(mg SS/L) | SSin | 11 | 第一个反应池悬浮固体浓度(mg SS/L) | SSr1 |
2 | 入水总化学需氧量 (mg COD/L) | CODin | 12 | 第二个反应池NH4+ + NH3 (mg N/L) | SNHr2 |
3 | 入水NH4+ + NH3 (mg N/L) | SNHin | 13 | 第二个反应池氨氮(mg N/L) | SNOr2 |
4 | 出水悬浮固体浓度(mg SS/L) | SSe | 14 | 第二个反应池溶解氧(g COD/m3) | SOr2 |
5 | 出水总化学需氧量 (mg COD/L) | CODe | 15 | 第五个反应池NH4+ + NH3 (mg N/L) | SNHr5 |
6 | 出水NH4+ + NH3 (mg N/L) | SNHe | 16 | 第五个反应池氨氮(mg N/L) | SNOr5 |
7 | 出水氨氮 (mg N/L) | SNOe | 17 | 第五个反应池溶解氧(g COD/m3) | SOr5 |
8 | 第一个反应池NH4+ + NH3 (mg N/L) | SNHr1 | 18 | 入水流水(m3/d) | Qin |
9 | 第一个反应池氨氮(mg N/L) | SNOr1 | 19 | 内部循环流水(m3/d) | Qintr |
10 | 第一个反应池溶解氧(g COD/m3) | SOr1 | 20 | 出水流水(m3/d) | Qe |
表1 辅助变量
Table 1 List of secondary variables
序号 | 变量描述 | 符号 | 序号 | 变量描述 | 符号 |
---|---|---|---|---|---|
1 | 入水悬浮固体浓度(mg SS/L) | SSin | 11 | 第一个反应池悬浮固体浓度(mg SS/L) | SSr1 |
2 | 入水总化学需氧量 (mg COD/L) | CODin | 12 | 第二个反应池NH4+ + NH3 (mg N/L) | SNHr2 |
3 | 入水NH4+ + NH3 (mg N/L) | SNHin | 13 | 第二个反应池氨氮(mg N/L) | SNOr2 |
4 | 出水悬浮固体浓度(mg SS/L) | SSe | 14 | 第二个反应池溶解氧(g COD/m3) | SOr2 |
5 | 出水总化学需氧量 (mg COD/L) | CODe | 15 | 第五个反应池NH4+ + NH3 (mg N/L) | SNHr5 |
6 | 出水NH4+ + NH3 (mg N/L) | SNHe | 16 | 第五个反应池氨氮(mg N/L) | SNOr5 |
7 | 出水氨氮 (mg N/L) | SNOe | 17 | 第五个反应池溶解氧(g COD/m3) | SOr5 |
8 | 第一个反应池NH4+ + NH3 (mg N/L) | SNHr1 | 18 | 入水流水(m3/d) | Qin |
9 | 第一个反应池氨氮(mg N/L) | SNOr1 | 19 | 内部循环流水(m3/d) | Qintr |
10 | 第一个反应池溶解氧(g COD/m3) | SOr1 | 20 | 出水流水(m3/d) | Qe |
序号 | 核函数名称 | 表达式 |
---|---|---|
k1 | Gauss | |
k2 | cauchy | |
k3 | bubble | |
k4 | poly | |
k5 | change points | |
k6 | spline |
表2 选择核函数
Table 2 List of chosen kernel functions
序号 | 核函数名称 | 表达式 |
---|---|---|
k1 | Gauss | |
k2 | cauchy | |
k3 | bubble | |
k4 | poly | |
k5 | change points | |
k6 | spline |
数据集 | 参数优化值 |
---|---|
晴天数据 | width=5, |
雨天数据 | width=25, |
暴雨数据 | width=25, |
表3 PSO优化参数值
Table 3 Parameters of PSO
数据集 | 参数优化值 |
---|---|
晴天数据 | width=5, |
雨天数据 | width=25, |
暴雨数据 | width=25, |
模型名称 | 参数设置 |
---|---|
BP | 隐含层激励函数=‘logsig’;输出层激励函数=‘purelin’;学习速率lr=0.1;隐含层神经元数=‘6’;训练次数=‘100’。 |
GA-SVM | 高斯核;正则化参数c= 96.6849;准确度阈值g= 0.0286;核参数p=0.01。 |
RVM | kernel=‘gauss’;width=10。 |
表4 模型参数设置
Table 4 Parameters definition of the comparison model
模型名称 | 参数设置 |
---|---|
BP | 隐含层激励函数=‘logsig’;输出层激励函数=‘purelin’;学习速率lr=0.1;隐含层神经元数=‘6’;训练次数=‘100’。 |
GA-SVM | 高斯核;正则化参数c= 96.6849;准确度阈值g= 0.0286;核参数p=0.01。 |
RVM | kernel=‘gauss’;width=10。 |
模型 | 模型名称 评价指标 | 晴天 | 雨天 | 暴雨 | |||
---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | ||
基础模型 | BP | 0.0301 | 0.9986 | 0.9422 | 0.5452 | 0.7042 | 0.5987 |
GA-SVM | 0.0414 | 0.9966 | 0.8579 | 0.6506 | 0.4398 | 0.9030 | |
RVM | 0.0196 | 0.9990 | 0.8755 | 0.6284 | 0.5661 | 0.7774 | |
MRVM | 0.0154 | 0.9991 | 0.5632 | 0.9235 | 0.3547 | 0.9221 | |
自适应模型 | TD-BP | 0.0031 | 0.999973 | 0.0362 | 0.9992 | 0.0539 | 0.9975 |
TD-GA-SVM | 0.0036 | 0.999957 | 0.0170 | 0.9998 | 0.0344 | 0.9991 | |
TD-RVM | 0.0037 | 0.999952 | 0.0161 | 0.9998 | 0.0264 | 0.9994 | |
TD-MRVM | 0.0032 | 0.999962 | 0.0158 | 0.9998 | 0.0257 | 0.9994 |
表5 模型预测结果对比
Table 5 Comparison of RMSE and relevance results of each model
模型 | 模型名称 评价指标 | 晴天 | 雨天 | 暴雨 | |||
---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | ||
基础模型 | BP | 0.0301 | 0.9986 | 0.9422 | 0.5452 | 0.7042 | 0.5987 |
GA-SVM | 0.0414 | 0.9966 | 0.8579 | 0.6506 | 0.4398 | 0.9030 | |
RVM | 0.0196 | 0.9990 | 0.8755 | 0.6284 | 0.5661 | 0.7774 | |
MRVM | 0.0154 | 0.9991 | 0.5632 | 0.9235 | 0.3547 | 0.9221 | |
自适应模型 | TD-BP | 0.0031 | 0.999973 | 0.0362 | 0.9992 | 0.0539 | 0.9975 |
TD-GA-SVM | 0.0036 | 0.999957 | 0.0170 | 0.9998 | 0.0344 | 0.9991 | |
TD-RVM | 0.0037 | 0.999952 | 0.0161 | 0.9998 | 0.0264 | 0.9994 | |
TD-MRVM | 0.0032 | 0.999962 | 0.0158 | 0.9998 | 0.0257 | 0.9994 |
模型名称 评价指标 | 突变5% | 突变10% | 突变20% | 突变40% | ||||
---|---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | RMSE | r | |
BP | 0.1195 | 0.9482 | 0.2156 | 0.9500 | 0.4053 | 0.8566 | 0.7486 | 0.6892 |
GA-SVM | 0.1092 | 0.9860 | 0.1848 | 0.9616 | 0.3320 | 0.8939 | 0.6004 | 0.7639 |
RVM | 0.0769 | 0.9924 | 0.1378 | 0.9763 | 0.2507 | 0.9302 | 0.4684 | 0.8218 |
TD-MRVM | 0.0080 | 0.9998 | 0.0144 | 0.9992 | 0.0271 | 0.9973 | 0.0499 | 0.9910 |
表6 SSe突变模型预测结果对比
Table 6 Comparison of predictive results on SSe outliers models
模型名称 评价指标 | 突变5% | 突变10% | 突变20% | 突变40% | ||||
---|---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | RMSE | r | |
BP | 0.1195 | 0.9482 | 0.2156 | 0.9500 | 0.4053 | 0.8566 | 0.7486 | 0.6892 |
GA-SVM | 0.1092 | 0.9860 | 0.1848 | 0.9616 | 0.3320 | 0.8939 | 0.6004 | 0.7639 |
RVM | 0.0769 | 0.9924 | 0.1378 | 0.9763 | 0.2507 | 0.9302 | 0.4684 | 0.8218 |
TD-MRVM | 0.0080 | 0.9998 | 0.0144 | 0.9992 | 0.0271 | 0.9973 | 0.0499 | 0.9910 |
模型名称 评价指标 | 漂移1° | 漂移2° | 漂移5° | 漂移10° | ||||
---|---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | RMSE | r | |
BP | 0.1634 | 0.9682 | 0.3003 | 0.8946 | 0.6872 | 0.5933 | 1.2211 | 0.2682 |
GA-SVM | 0.1587 | 0.9860 | 0.2741 | 0. 8992 | 0.6028 | 0.6359 | 1.0593 | 0.3501 |
RVM | 0.1063 | 0.9863 | 0.1927 | 0.9548 | 0.4274 | 0.8045 | 0.7056 | 0.6004 |
TD-MRVM | 0.0041 | 0.9999 | 0.0058 | 0.9999 | 0.0121 | 0.9995 | 0.0229 | 0.9981 |
表7 SSe漂移模型预测结果对比
Table 7 Comparison of predictive results on SSe drifting models
模型名称 评价指标 | 漂移1° | 漂移2° | 漂移5° | 漂移10° | ||||
---|---|---|---|---|---|---|---|---|
RMSE | r | RMSE | r | RMSE | r | RMSE | r | |
BP | 0.1634 | 0.9682 | 0.3003 | 0.8946 | 0.6872 | 0.5933 | 1.2211 | 0.2682 |
GA-SVM | 0.1587 | 0.9860 | 0.2741 | 0. 8992 | 0.6028 | 0.6359 | 1.0593 | 0.3501 |
RVM | 0.1063 | 0.9863 | 0.1927 | 0.9548 | 0.4274 | 0.8045 | 0.7056 | 0.6004 |
TD-MRVM | 0.0041 | 0.9999 | 0.0058 | 0.9999 | 0.0121 | 0.9995 | 0.0229 | 0.9981 |
模型 | 晴天 | 雨天 | 暴雨 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5% | 7.5% | 10% | 0 | 5% | 7.5% | 10% | 0 | 5% | 7.5% | 10% | |
TD-BP | 0.0031 | 0.0371 | 0.0389 | 0.0440 | 0.0362 | 0.0676 | 0.0687 | 0.0837 | 0.0539 | 0.1059 | 0.1059 | 0.1048 |
TD-GA-SVM | 0.0036 | 0.0374 | 0.0361 | 0.0356 | 0.0170 | 0.0655 | 0.0658 | 0.0659 | 0.0344 | 0.1082 | 0.1126 | 0.1128 |
TD-RVM | 0.0037 | 0.0537 | 0.0521 | 0.0511 | 0.0161 | 0.0861 | 0.0865 | 0.0869 | 0.0264 | 0.1090 | 0.1094 | 0.1104 |
TD-MRVM | 0.0032 | 0.0380 | 0.0367 | 0.0360 | 0.0158 | 0.0625 | 0.0622 | 0.0621 | 0.0257 | 0.1014 | 0.1015 | 0.1017 |
表8 测量白噪声影响下模型预测结果对比
Table 8 Comparison of predictive results on white noise effect
模型 | 晴天 | 雨天 | 暴雨 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5% | 7.5% | 10% | 0 | 5% | 7.5% | 10% | 0 | 5% | 7.5% | 10% | |
TD-BP | 0.0031 | 0.0371 | 0.0389 | 0.0440 | 0.0362 | 0.0676 | 0.0687 | 0.0837 | 0.0539 | 0.1059 | 0.1059 | 0.1048 |
TD-GA-SVM | 0.0036 | 0.0374 | 0.0361 | 0.0356 | 0.0170 | 0.0655 | 0.0658 | 0.0659 | 0.0344 | 0.1082 | 0.1126 | 0.1128 |
TD-RVM | 0.0037 | 0.0537 | 0.0521 | 0.0511 | 0.0161 | 0.0861 | 0.0865 | 0.0869 | 0.0264 | 0.1090 | 0.1094 | 0.1104 |
TD-MRVM | 0.0032 | 0.0380 | 0.0367 | 0.0360 | 0.0158 | 0.0625 | 0.0622 | 0.0621 | 0.0257 | 0.1014 | 0.1015 | 0.1017 |
1 | 肖红军, 刘乙奇, 黄道平. 面向污水处理的动态变分贝叶斯混合因子故障诊断[J]. 控制理论与应用, 2016, 33(11): 1519-1526. |
XiaoH J, LiuY Q, HuangD P. Dynamic fault diagnosis via variational Bayesian mixture factor analysis with application to wastewater treatment[J]. Control Theory & Applications, 2016, 33(11): 1519-1526. | |
2 | 黄道平, 刘乙奇, 李艳.软测量在污水处理过程中的研究与应用[J].化工学报, 2011, 62 (1): 1-9. |
HuangD P, LiuY Q, LiY. Soft sensor research and its application in wastewater treatment[J]. CIESC Journal, 2011, 62(1): 1-9. | |
3 | 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788-800. |
CaoP F, LuoX L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3): 788-800. | |
4 | HaimiH, MulasM, CoronaF, et al. Data-derived soft-sensors for biological wastewater treatment plants: an overview[J]. Environmental Modelling & Software, 2013, 47: 88-107. |
5 | VapnikV N, VapnikV. Statistical Learning Theory[M]. New York: Wiley, 1998. |
6 | HuangY R, ZhangS D. Dissolved oxygen intelligent optimization control system in the aeration tank of wastewater treatment[J]. Information and Control, 2011, 40(3): 393-400. |
7 | 曹巍, 赵英凯, 高世伟. 基于模糊核聚类的多类支持向量机[J]. 化工学报, 2010, 61(2): 420-424. |
CaoW, ZhaoY K, GaoS W. Multi-class support vector machines based on fuzzy kernel cluster[J]. CIESC Journal, 2010, 61(2): 420-424. | |
8 | 刘瑞兰, 徐艳, 戎舟. 基于稀疏最小二乘支持向量机的软测量建模[J]. 化工学报, 2015, 66(4): 1402-1406. |
LiuR L, XuY, RongZ. Modeling soft sensor based on sparse least square support vector machine[J]. CIESC Journal, 2015, 66(4): 1402-1406. | |
9 | 马建, 邓晓刚, 王磊. 基于深度集成支持向量机的工业过程软测量方法[J]. 化工学报, 2018, 69(3): 1121-1128. |
MaJ, DengX G, WangL. Industrial process soft sensor method based on deep learning ensemble support vector machine[J]. CIESC Journal, 2018, 69(3): 1121-1128. | |
10 | TippingM E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, (1): 211-244. |
11 | GeZ Q, SongZ H. Nonlinear soft sensor development based on relevance vector machine[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8685-8693. |
12 | MotaiY. Kernel association for classification and prediction: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(2): 208-223. |
13 | LiuY, ChenJ, SunZ, et al. A probabilistic self-validating soft-sensor with application to wastewater treatment[J]. Computers & Chemical Engineering, 2014, 71(71): 263-280. |
14 | LiuY. Adaptive just-in-time and relevant vector machine based soft-sensors with adaptive differential evolution algorithms for parameter optimization[J]. Chemical Engineering Science, 2017, 172: 571-584. |
15 | 许玉格, 曹涛, 罗飞. 基于相关向量机的污水处理出水水质预测模型[J]. 华南理工大学学报(自然科学版), 2014, 42(5): 103-108. |
XuY G , CaoT, LuoF. Wastewater effluent quality prediction model base on relevance vector machine[J]. Journal of South China University of Technology(Natural Science Edition), 2014, 42(5): 103-108. | |
16 | 汪洪桥, 孙富春, 蔡艳宁, 等. 多核学习方法[J]. 自动化学报, 2010, 36(8): 1037-1050. |
WangH Q, SunF C, CaiY N, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8): 1037-1050. | |
17 | 杨柳, 张磊, 张少勋, 等. 单核和多核相关向量机的比较研究[J]. 计算机工程, 2010, 36(12): 195-197. |
YangL, ZhangL, ZhangS X, et al. Comparison research of single kernel and multi-kernel relevance vector machine[J]. Computer Engineering, 2010, 36(12): 195-197. | |
18 | LeeW J, VerzakovS, DuinR P W. Kernel combination versus classifier combination[C]//International Workshop on Multiple Classifier Systems. Heidelberg, Berlin: Springer, 2007: 22-31. |
19 | GönenM, AlpaydınE. Localized multiple kernel learning[C]// Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: ACM, 2008: 352-359 |
20 | KloftM, BrefeldU, LaskovP, et al. Non-sparse multiple kernel learning[C]// Proceedings of the Workshop on Kernel Learning: Automatic Selection of Optimal Kernels. Whistler, Canada: The MIT Press, 2008: 1-4 |
21 | 曹涛. 基于相关向量机的污水软测量建模研究[D]. 广州: 华南理工大学, 2015. |
CaoT. Study of soft sensor modeling for wastewater treatment process base on relevance vector machine[D]. Guangzhou: South China University of Technology, 2015. | |
22 | LinY, XiaK, JiangX, et al. Landslide susceptibility mapping based on particle swarm optimization of multiple kernel relevance vector machines: case of a low Hill Area in Sichuan Province, China[J]. ISPRS International Journal of Geo-Information, 2016, 5(10): 191. |
23 | 赵朋程, 刘彬, 高伟, 等. 用于水泥熟料fCaO预测的多核最小二乘支持向量机模型[J]. 化工学报, 2016, 67(6): 2480-2487. |
ZhaoP C, LiuB, GaoW, et al. Multiple kernel least square support vector machine model for prediction of cement clinker lime content[J]. CIESC Journal, 2016, 67(6): 2480-2487. | |
24 | KaltwangS, TodorovicS, PanticM. Doubly sparse relevance vector machine for continuous facial behavior estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(9): 1748-1761. |
25 | SouzaF A A, AraujoR, MendesJ. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152: 69-79. |
26 | KanekoH, FunatsuK. Moving window and just-in-time soft sensor model based on time differences considering a small number of measurements[J]. Industrial & Engineering Chemistry Research, 2015, 54(2): 700-704. |
27 | QinS J. Recursive PLS algorithms for adaptive data modeling[J]. Computers & Chemical Engineering, 1998, 22(4/5): 503-514. |
28 | 刘乙奇. 自确认软测量模型研究及其在污水处理中的应用 [D]. 广州: 华南理工大学, 2013. |
LiuY Q. Research on self-validating soft sensor modeling and its application in wastewater treatment process[D]. Guangzhou: South China University of Technology, 2013. | |
29 | KanekoH, FunatsuK. Maintenance-free soft sensor models with time difference of process variables[J]. Chemometrics and Intelligent Laboratory Systems, 2011, 107(2): 312-317. |
30 | KanekoH, FunatsuK. Classification of the degradation of soft sensor models and discussion on adaptive models[J]. AIChE Journal, 2013, 59(7): 2339-2347. |
31 | XiongW, LiY, ZhaoY, et al. Adaptive soft sensor based on time difference Gaussian process regression with local time-delay reconstruction[J]. Chemical Engineering Research and Design, 2017, 117: 670-680. |
32 | DuvenaudD. Automatic model construction with Gaussian processes[D]. Cambridge: University of Cambridge, 2014. |
[1] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[2] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[3] | 罗顺桦, 王振雷, 王昕. 基于二子空间协同训练算法的半监督软测量建模[J]. 化工学报, 2022, 73(3): 1270-1279. |
[4] | 王龙洋, 蒙西, 乔俊飞. 基于改进集合经验模态分解和深度信念网络的出水总磷预测[J]. 化工学报, 2021, 72(5): 2745-2753. |
[5] | 赵杨, 熊伟丽. 基于多策略自适应差分进化算法的污水处理过程多目标优化控制[J]. 化工学报, 2021, 72(4): 2167-2177. |
[6] | 刘聪, 谢莉, 杨慧中. 基于改进DPC的青霉素发酵过程多模型软测量建模[J]. 化工学报, 2021, 72(3): 1606-1615. |
[7] | 陈忠圣, 朱梅玉, 贺彦林, 徐圆, 朱群雄. 基于分位数回归CGAN的虚拟样本生成方法及其过程建模应用[J]. 化工学报, 2021, 72(3): 1529-1538. |
[8] | 李东, 黄道平, 刘乙奇. 基于协同训练的半监督异构自适应软测量建模方法的研究[J]. 化工学报, 2020, 71(5): 2128-2138. |
[9] | 张璐, 张嘉成, 韩红桂, 乔俊飞. 基于模糊神经网络的污水处理生化除磷过程控制[J]. 化工学报, 2020, 71(3): 1217-1225. |
[10] | 杜宇浩, 阎高伟, 李荣, 王芳. 基于局部线性嵌入的测地线流式核多工况软测量建模方法[J]. 化工学报, 2020, 71(3): 1278-1287. |
[11] | 杨逸俊,王振雷,王昕. 基于最近邻与神经网络融合模型的软测量建模方法[J]. 化工学报, 2020, 71(12): 5696-5705. |
[12] | 代学志,熊伟丽. 基于核极限学习机的快速主动学习方法及其软测量应用[J]. 化工学报, 2020, 71(11): 5226-5236. |
[13] | 侯延彬,高宪文,李翔宇. 采油过程多尺度状态特征生成的有杆泵动态液面预测[J]. 化工学报, 2019, 70(S2): 311-321. |
[14] | 秦美华, 朱红求, 李勇刚, 陈俊名, 张凤雪, 李文婷. 基于STA-K均值聚类的电化学废水处理过程离子浓度软测量[J]. 化工学报, 2019, 70(9): 3458-3464. |
[15] | 柴伟, 郭龙航, 池彬彬. 污水处理厂出水水质变量区间预测建模[J]. 化工学报, 2019, 70(9): 3449-3457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||