化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5090-5098.DOI: 10.11949/0438-1157.20200451
收稿日期:
2020-04-29
修回日期:
2020-08-12
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
潘伶
作者简介:
王健(1993—),男,硕士研究生,基金资助:
Jian WANG(),Ling PAN(),Shuai WANG,Hao ZHANG
Received:
2020-04-29
Revised:
2020-08-12
Online:
2020-11-05
Published:
2020-11-05
Contact:
Ling PAN
摘要:
传统的除尘系统脱除粗颗粒效率高,而脱除超细颗粒效率非常低,我国燃煤电厂脱除超细颗粒效率无法达到国家标准。湿式相变凝并技术是脱除烟气中超细颗粒的新技术。考虑颗粒性质以及通风因子,改进了超细颗粒凝并长大数学模型。将改进的数学模型写入颗粒群平衡模型中,模拟对比了超细颗粒在管束型相变凝并器和波纹板型相变凝并器内的长大特性及脱除效率。结果表明,两种相变凝并器都能明显提高超细颗粒的脱除效率,但管束型相变凝并器对烟气的冷却效果比波纹板型相变凝并器好。管束型相变凝并器能促进颗粒长大7.71倍,是波纹板型相变凝并器的1.4倍。管束型相变凝并器对颗粒数量浓度脱除效率高达64.7%,而波纹板型相变凝并器对颗粒数量浓度脱除效率为27.2%。
中图分类号:
王健,潘伶,王帅,张昊. 工程相变凝并器内超细颗粒长大与脱除性能分析[J]. 化工学报, 2020, 71(11): 5090-5098.
Jian WANG,Ling PAN,Shuai WANG,Hao ZHANG. Analysis of ultrafine particles growth and removal in phase-transition agglomerator for engineering[J]. CIESC Journal, 2020, 71(11): 5090-5098.
1 | 任清泉, 肖纯凌. 细颗粒物对呼吸系统相关疾病的影响[J]. 沈阳医学院学报, 2019, 21(2): 157-160. |
Ren Q Q, Xiao C L. Effects of fine particles on respiratory diseases[J]. Journal of Shenyang Medical College, 2019, 21(2): 157-160. | |
2 | 王珲, 宋蔷, 姚强, 等. 电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J]. 中国电机工程学报, 2008, (5): 1-7. |
Wang H, Song Q, Yao Q, et al. Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J]. Proceedings of the CSEE, 2008, (5): 1-7. | |
3 | 潘伶, 杨燕珍. 袋式除尘器内部流场的数值模拟[J]. 环境工程学报, 2012, 6(8): 2750-2754. |
Pan L, Yang Y Z. Numerical simulation of flow field in bag filter[J]. Techniques and Equipment for Environmental Pollution Control, 2012, 6(8): 2750-2754. | |
4 | 潘伶, 杨沛山, 曹友洪. 加热风前后湿法脱硫直排烟囱二次脱水流场的模拟计算[J]. 化工学报, 2013, 64(7): 2336-2343. |
Pan L, Yang P S, Cao Y H. Simulation of secondary dehydration flow field of WFGD direct-discharged chimney with and without hotwind[J]. CIESC Jorunal, 2013, 64(7): 2336-2343. | |
5 | 郗元, 霍浩, 代岩. 旋风除尘器最优化设计及CFD数值验证[J]. 机械设计与制造, 2018, 330(8): 41-43+48. |
Xi Y, Huo H, Dai Y. Optimization design of cyclone dust collector and CFD numerical verification[J]. Machinery Design & Manufacture, 2018, 330(8): 41-43+48. | |
6 | 我国电除尘行业2013年发展综述[J]. 中国环保产业, 2014, (11): 4-16. |
Development report on China electrostatic precipitation industry in2013[J]. China Environmental Protection Industry, 2014, (11): 4-16. | |
7 | 我国袋式除尘行业2013年发展综述[J]. 中国环保产业, 2014, (9): 16-26. |
Development report on China bag hose precipitation industry in2013[J]. China Environmental Protection Industry, 2014, (9): 16-26. | |
8 | 熊英莹, 谭厚章. 湿式相变冷凝除尘技术对微细颗粒物的脱除研究[J]. 洁净煤技术, 2015, 21(2): 20-24. |
Xiong Y Y, Tan H Z. Influence of wet phase transition condensate dust removal technology on fine particle removal[J]. Clean Coal Technology, 2015, 21(2): 20-24. | |
9 | 王东歌, 朱法华, 惠润堂, 等. 相变凝聚器对WESP提效研究及工程应用[J]. 中国电机工程学报, 2016, (16): 4349-4355. |
Wang D G, Zhu F H, Hui R T, et al. Experimental investigation and engineering practice of PTC on increasing WESP collection efficiency[J]. Proceedings of the CSEE, 2016, (16): 4349-4355. | |
10 | Fletcher N H. Size effect in heterogeneous nucleation[J]. Journal of Chemical Physics, 1958, 29(3): 572-576. |
11 | Mason B J. The Physics of Clouds[M]. 2nd ed. Oxford: Oxford University Press, 1971. |
12 | Kulmala M, Majerowicz A, Wagner P E. Condensational growth at large vapour concentration: limits of applicability of the mason equation[J]. Journal of Aerosol Science, 1989, 20(8): 1023-1026. |
13 | Park S H, Lee K W. Condensational growth of polydisperse aerosol for the entire particle size range[J]. Aerosol Science and Technology, 2000, 33(3): 6. |
14 | Smoluchowski M. Versuch einer mathematischen theorie der koagulations kinetik kolloider losungen[J]. Zeitschrift fur Physikalische Chemie (Leipzig), 1917, 92: 124-168. |
15 | Saffman P G, Turner J S. On the collision of drops in turbulent clouds[J]. Journal of Fluid Mechanics, 1956, 1(1): 16-30. |
16 | 郑建祥, 许帅, 王京阳. 超细颗粒聚团模型及湍流聚并器聚团研究[J]. 中国电机工程学报, 2016, 36(16): 4389-4395+ 4524. |
Zheng J X, Xu S, Wang J Y. Simulation study of ultrafine particle aggregation models and agglomerator coagulation[J]. Proceedings of the CSEE, 2016, 36(16): 4389-4395+4524. | |
17 | 郑建祥, 李玉凯, 孙笑楠, 等. 湍流聚团过程中非球形颗粒聚团碰撞频率分析研究[J]. 化工学报, 2019, 70: 228-236. |
Zheng J X, Li Y K, Sun X N, et al. Analysis of collision frequency of non-spherical particle agglomeration during turbulent agglomeration processes [J]. CIESC Journal, 2019, 70: 228-236. | |
18 | 徐俊超. 燃煤PM2.5在水汽条件下的核化长大特性研究[D]. 南京: 东南大学, 2018. |
Xu J C. Characteristics of coal-fired PM2.5 nucleation and growth under supersaturated water vapor[D]. Nanjing: Southeast University, 2018. | |
19 | La Motta F, Di Natale F, Carotenuto C, et al. Removal of fine and ultrafine particles by means of a condensational growth assisted bubble column[J]. Canadian Journal of Chemical Engineering, 2017, 95(9): 1661-1670. |
20 | Kim D S, Hong S B, Kwon J T, et al. Evaluation of particle growth systems for sampling and analysis of atmospheric fine particles[J]. Particuology, 2011, 6: 70-74. |
21 | Zhang H, Wang Z, Song W L, et al. Simulation of fine polydisperse particle condensational growth under an octadecane-nitrogen atmosphere[J]. Particuology, 2018, 38: 71-79. |
22 | Park S H, Lee K W, Shimada M, et al. Change in particle size distribution of aerosol undergoing condensational growth: alternative analytical solution for the low Knudsen number regime[J]. Journal of Aerosol Science, 2002, 33(9): 1297-1307. |
23 | 熊桂龙, 杨林军, 颜金培, 等. 应用蒸汽相变脱除燃煤湿法脱硫净烟气中细颗粒物[J]. 化工学报, 2011, 62(10): 2932-2938. |
Xiong G L, Yang L J, Yan J P, et al. Removal of fine particles by heterogeneous condensation from wet-process desulfurized flue gas[J]. CIESC Journal, 2011, 62(10): 2932-2938. | |
24 | 谭厚章, 熊英莹, 王毅斌, 等. 湿式相变凝聚技术协同湿式电除尘器脱除微细颗粒物研究[J]. 工程热物理学报, 2016, (12): 2710-2714. |
Tan H Z, Xiong Y Y, Wang Y B, et al. Investigation on fine particulate matters removal by using wet phase transition agglomeration technology cooperated with wet electro static precipitator[J]. Journal of Engineering Thermophysics, 2016, (12): 2710-2714. | |
25 | 谭厚章, 熊英莹, 王毅斌, 等. 湿式相变凝聚器协同多污染物脱除研究[J]. 中国电力, 2017, 50(2): 128-134. |
Tan H Z, Xiong Y Y, Wang Y B, et al. Study on synergistic removal of multi-pollutants by WPTA[J]. Electric Power, 2017, 50(2): 128-134. | |
26 | 赵海波, 郑楚光. 离散系统动力学演变过程的颗粒群平衡模拟[M]. 北京: 科学出版社, 2008. |
Zhao H B, Zheng C G. Population Balance Modeling for the Process of the Dynamic Evolution in Dispersed Systems[M]. Beijing: Science Press, 2008. | |
27 | Kulmala M. Condensational growth and evaporation in the transition regime: an analytic expression[J]. Aerosol Science and Technology, 1993, 19: 381-388. |
28 | 余廷芳, 高巨, 熊桂龙, 等. 基于分子运动学的水汽在细颗粒表面异质核化的数值模拟[J]. 化工学报, 2020, 71(7): 3071-3079. |
Yu T F, Gao J, Xiong G L, et al. Numerical simulation of heterogeneous nucleation of water vapor on surface of fine particles based on molecular kinetics[J]. CIESC Journal, 2020, 71(7): 3071-3079. | |
29 | 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2013. |
Sheng P X, Mao J T, Li J G, et al. Atmospheric Physics[M]. Beijing: Peking University Press, 2013. | |
30 | Abrahamson J. Collision rates of small particles in a vigorously turbulent fluid[J]. Chemical Engineering Science, 1975, 30(11): 1371-1379. |
31 | 刘润哲. 细颗粒在蒸汽异相凝结过程中核化长大特性研究[D]. 上海: 华东理工大学, 2019. |
Liu R Z. The nucleation and growth characteristics of fine particles in the process of vapor heterogeneous condensation[D]. Shanghai: East China University of Science and Technology, 2019. |
[1] | 单良, 尹荣强, 王慧, 费传军, 周清清, 徐杰, 王志强, 徐涛, 陈建军, 李俊华. VMoTi/玻纤复合催化滤布制备及其除尘协同脱硝性能研究[J]. 化工学报, 2021, 72(9): 4892-4899. |
[2] | 孙宗康, 张笑丹, 杨林军, 陈帅, 吴新. 化学与湍流团聚耦合促进燃煤细颗粒物团聚与脱除[J]. 化工学报, 2020, 71(3): 1317-1325. |
[3] | 王龙, 刘会娥, 刘宇童, 于云飞, 陈爽, 于文赫, 张秀霞. 微乳液法用于落地原油应急处理及资源回收的研究[J]. 化工学报, 2019, 70(7): 2699-2707. |
[4] | 赵士林, 段钰锋, 丁艳军, 谷小兵, 杜明生, 姚婷, 陈聪, 刘猛, 吕剑虹. 320MW燃煤电厂痕量元素的分布、脱除及排放特性[J]. 化工学报, 2017, 68(7): 2910-2917. |
[5] | 刘道银, 王远保, 王铮, 陈晓平. 超细颗粒聚团流化的临界流化速度[J]. 化工学报, 2017, 68(11): 4105-4111. |
[6] | 王芳, 曾玺, 孙延林, 张建岭, 唐诗白, 余剑, 王永刚, 许光文. 两段流化床中半焦催化脱除焦油特性[J]. 化工学报, 2017, 68(10): 3762-3769. |
[7] | 郑建祥, 许帅, 王京阳, 史梦燚, 汪龙. 基于微分代数积分矩量法的聚并器超细颗粒聚团研究[J]. 化工学报, 2017, 68(1): 119-128. |
[8] | 胡斌, 刘勇, 杨春敏, 侯大伟, 袁竹林, 杨林军. 化学团聚促进电除尘脱除烟气中PM2.5和SO3[J]. 化工学报, 2016, 67(9): 3902-3909. |
[9] | 田顺风, 程力, 顾正彪, 洪雁, 李兆丰, 李才明. 玉米秸秆中不同木质素脱除方法对纤维素酶吸附及酶解效果的比较[J]. 化工学报, 2016, 67(5): 2084-2092. |
[10] | 孙伟, 刘小伟, 徐义书, 陈栋, 张宇, 崔江, 徐明厚. 两种改性高岭土减排超细颗粒物的对比分析[J]. 化工学报, 2016, 67(4): 1179-1185. |
[11] | 徐纯燕, 常景彩, 王翔, 张静, 崔琳, 张波, 马春元. 亲水改性碳钢极板用于PM2.5脱除[J]. 化工学报, 2016, 67(10): 4446-4454. |
[12] | 刘春爽, 李甲国, 闫来洪, 赵东风, 马斌, 李祥, 王爱杰. 废水中硫化物、硝酸盐和氨氮生物同步去除及其机理[J]. 化工学报, 2015, 66(2): 779-784. |
[13] | 刘勇, 赵汶, 刘瑞, 杨林军. 化学团聚促进电除尘脱除PM2.5的实验研究[J]. 化工学报, 2014, 65(9): 3609-3616. |
[14] | 颜金培, 陈立奇, 杨林军. 燃煤细颗粒在过饱和氛围下声波团聚脱除的实验研究[J]. 化工学报, 2014, 65(8): 3243-3249. |
[15] | 周昊, 张志中, 鲍强, 刘建成, 岑可法. 添加剂对NOxOUT脱硝及N2O、CO生成的影响特性[J]. 化工学报, 2014, 65(6): 2232-2240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||