1 |
李歌, 王宝冬, 马子然, 等. 烟气多污染物协同处理催化陶瓷过滤管的研究进展[J]. 化工进展, 2020, 39(8): 3307-3319.
|
|
Li G, Wang B D, Ma Z R, et al. Research progress of catalytic ceramic filter tubes for synergistic removal of flue gas pollutants[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3307-3319.
|
2 |
Dvořák R, Chlápek P, Jecha D, et al. New approach to common removal of dioxins and NOx as a contribution to environmental protection[J]. Journal of Cleaner Production, 2010, 18(9): 881-888.
|
3 |
王军锋, 李金, 徐惠斌, 等. 湿法脱硫协同去除细颗粒物的研究进展[J]. 化工进展, 2019, 38(7): 3402-3411.
|
|
Wang J F, Li J, Xu H B, et al. Advances in research on wet desulfurization and synergistic removal of fine particles[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3402-3411.
|
4 |
武广龙, 赵静, 何海军, 等. 陶瓷催化滤管烟气污染物一体化脱除技术研究进展[J]. 能源环境保护, 2020, 34(5): 1-5.
|
|
Wu G L, Zhao J, He H J, et al. Research process on integrated removal technology of flue gas pollutants by ceramic catalytic filter tube[J]. Energy Environmental Protection, 2020, 34(5): 1-5.
|
5 |
Feng S S, Zhou M D, Han F, et al. A bifunctional MnOx@PTFE catalytic membrane for efficient low temperature NOx-SCR and dust removal[J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1260-1267.
|
6 |
Li W M, Liu H D, Chen Y F. Fabrication of MnOx-CeO2-based catalytic filters and their application in low-temperature selective catalytic reduction of NO with NH3[J]. Industrial & Engineering Chemistry Research, 2020, 59(28): 12657-12665.
|
7 |
Phule A D, Choi J H, Kim J H. High performance of catalytic sheet filters of V2O5-WO3/TiO2 for NOx reduction[J]. Environmental Science and Pollution Research, 2020, doi:10.1007/S11356-020-10552-2.
DOI
URL
|
8 |
杨波, 沈岳松, 邱云顺, 等. Mn-La-Ce-Ni-Ox/P84一体化滤布的低温脱硝影响因素[J]. 环境工程学报, 2016, 10(11): 6583-6587.
|
|
Yang B, Shen Y S, Qiu Y S, et al. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/ P84[J]. Chinese Journal of Environmental Engineering, 2016, 10(11): 6583-6587.
|
9 |
陈影. 催化脱硝功能性聚苯硫醚(PPS)针刺过滤材料的制备及性能研究[D]. 青岛: 青岛大学, 2020.
|
|
Chen Y. Preparation and performance study of catalytic denitrification functional polyphenylene sulfide(PPS) needle filtration material[D]. Qingdao: Qingdao University, 2020.
|
10 |
张先龙, 彭真, 刘鹏, 等. 基于PPS的锰基催化脱硝-除尘功能一体化滤料的制备及其低温SCR脱硝[J]. 功能材料, 2015, 46(S2): 160-164.
|
|
Zhang X L, Peng Z, Liu P, et al. Preparation of PPS filter loaded with MnOx for dust elimination and de-NO by low-temperature SCR[J]. Journal of Functional Materials, 2015, 46(S2): 160-164.
|
11 |
陆勤伟, 徐辉, 周冠辰, 等. 负载催化剂活性液的P84/PTFE复合滤料的性能[J]. 河南工程学院学报(自然科学版), 2017, 29(4): 22-24.
|
|
Lu Q W, Xu H, Zhou G C, et al. Study on the properties of P84/PTFE composite filter loaded with catalyst active liquid[J]. Journal of Henan Institute of Engineering (Natural Science Edition), 2017, 29(4): 22-24.
|
12 |
Yang B, Zheng D H, Shen Y S, et al. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/PPS catalytic filters applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2015, 24: 148-152.
|
13 |
Li L, Diao Y F, Liu X. Ce-Mn mixed oxides supported on glass-fiber for low-temperature selective catalytic reduction of NO with NH3[J]. Journal of Rare Earths, 2014, 32(5): 409-415.
|
14 |
Wang R, Zhao L, Hu X H, et al. Study on V2O5-WO3-TiO2 catalytic filter for de-NO and particle separation[J]. Materials Research Express, 2019, 6(11): 115512.
|
15 |
陈雪红, 郑玉婴, 付彬彬, 等. 原位聚合MnO2/PoPD@PPS复合滤料及其NH3-SCR脱硝性能研究[J]. 燃料化学学报, 2017, 45(12): 1514-1521.
|
|
Chen X H, Zheng Y Y, Fu B B, et al. Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1514-1521.
|
16 |
王书晴, 杨波, 黄俞榕, 等. TiCe0.25Sn0.25Ox/聚酰亚胺纤维催化滤布同时脱除NO与粉尘的研究[J]. 环境污染与防治, 2020, 42(11): 1338-1344.
|
|
Wang S Q, Yang B, Huang Y R, et al. TiCe0.25Sn0.25Ox/polyimide fiber catalytic filter for simultaneous removal of NO and dust[J]. Environmental Pollution & Control, 2020, 42(11): 1338-1344.
|
17 |
Liu F D, He H, Lian Z H, et al. Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3[J]. Journal of Catalysis, 2013, 307: 340-351.
|
18 |
Choi J H, Kim S K, Bak Y C. The reactivity of V2O5-WO3-TiO2 catalyst supported on a ceramic filter candle for selective reduction of NO[J]. Korean Journal of Chemical Engineering, 2001, 18(5): 719-724.
|
19 |
Han L P, Gao M, Feng C, et al. Fe2O3-CeO2@Al2O3 nanoarrays on Al-mesh as SO2-tolerant monolith catalysts for NOx reduction by NH3[J]. Environmental Science & Technology, 2019, 53(10): 5946-5956.
|
20 |
Kang L, Han L P, Wang P L, et al. SO2-tolerant NOx reduction by marvelously suppressing SO2 adsorption over FeδCe1–δVO4 catalysts[J]. Environmental Science & Technology, 2020, 54(21): 14066-14075.
|
21 |
Ha J W, Choi J H. The effect of SO2 and H2O on the NO reduction of V2O5-WO3/TiO2/SiC catalytic filter[J]. Korean Chemical Engineering Research, 2014, 52(5): 688-693.
|
22 |
Tong T, Chen J J, Xiong S C, et al. Vanadium-density-dependent thermal decomposition of NH4HSO4 on V2O5/TiO2 SCR catalysts[J]. Catalysis Science & Technology, 2019, 9(14): 3779-3787.
|
23 |
Shimizu T, Hasegawa M, Inagaki M. Effect of water vapor on reaction rates of limestone-catalyzed NH3 oxidation and reduction of N2O under fluidized bed combustion conditions[J]. Energy & Fuels, 2000, 14(1): 104-111.
|
24 |
Ren H T, Zhang L T, Su K H, et al. Thermodynamic study of the chemical vapor deposition in the SiCl3CH3-NH3-H2 system[J]. Chemical Physics Letters, 2015, 623: 29-36.
|
25 |
Li T J, Zhuo Y Q, Chen C H, et al. Effect of water vapor on NH3 oxidation over CaO at 700—850℃[J]. Journal of Engineering Thermophysics, 2009, 30(7): 1233-1236.
|
26 |
Kang Y S, Kim S S, Hong S C. Combined process for removal of SO2, NOx, and particulates to be applied to a 1.6-MWe pulverized coal boiler[J]. Journal of Industrial and Engineering Chemistry, 2015, 30: 197-203.
|
27 |
于超, 李长明, 张喻升, 等. 典型陶瓷基体对催化滤芯中催化剂分散及脱硝活性的影响[J]. 化工学报, 2018, 69(2): 682-689.
|
|
Yu C, Li C M, Zhang Y S, et al. Effect of ceramic matrices on dispersion of loaded catalyst and DeNOx activity of catalytic filters[J]. CIESC Journal, 2018, 69(2): 682-689.
|
28 |
Chen J J, Zhao W T, Wu Q, et al. Effects of anaerobic SO2 treatment on nano-CeO2 of different morphologies for selective catalytic reduction of NOx with NH3[J]. Chemical Engineering Journal, 2020, 382: 122910.
|
29 |
Jiang B Q, Wu Z B, Liu Y, et al. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2[J]. The Journal of Physical Chemistry C, 2010, 114(11): 4961-4965.
|
30 |
Park Y O, Lee K W, Rhee Y W. Removal characteristics of nitrogen oxide of high temperature catalytic filters for simultaneous removal of fine particulate and NOx[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(1): 36-39.
|