化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2699-2707.DOI: 10.11949/0438-1157.20190274
王龙1(),刘会娥1(),刘宇童1,于云飞1,陈爽1,于文赫2,3,张秀霞1
收稿日期:
2019-03-22
修回日期:
2019-04-12
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
刘会娥
作者简介:
王龙(1991—),男,硕士研究生,<email>1154564639@qq.com</email>
基金资助:
Long WANG1(),Hui e LIU1(),Yutong LIU1,Yunfei YU1,Shuang CHEN1,Wenhe YU2,3,Xiuxia ZHANG1
Received:
2019-03-22
Revised:
2019-04-12
Online:
2019-07-05
Published:
2019-07-05
Contact:
Hui e LIU
摘要:
以十二烷基苯磺酸钠(SDBS)为表面活性剂配制微乳液对落地原油污染土壤进行应急处理及回收原油模拟实验。将原始与回收的原油、土壤进行对比发现:回收土壤的pH略高且大致呈中性,Zeta电位更小,黏粒体积分数减小,微乳液处理对土壤的理化性质影响较小;回收原油中饱和分含量升高,芳香分、胶质和沥青质含量降低,密度与黏度都降低,表明回收所得的是轻质原油。分析了SDBS、正丁醇、NaCl添加量及油水比对原油脱除率的影响,并对筛选出的3种配方微乳液进行温度、循环利用和放大实验检验原油脱除效果的稳定性,最终确定w(SDBS)=10%、w(n-butanol)=4.8%、w(NaCl)=0.8%、w(diesel)=12.8%的微乳液为处理落地原油的最优配方。
中图分类号:
王龙, 刘会娥, 刘宇童, 于云飞, 陈爽, 于文赫, 张秀霞. 微乳液法用于落地原油应急处理及资源回收的研究[J]. 化工学报, 2019, 70(7): 2699-2707.
Long WANG, Hui e LIU, Yutong LIU, Yunfei YU, Shuang CHEN, Wenhe YU, Xiuxia ZHANG. Emergency treatment of crude oil contaminated soil and resource recovery using microemulsion[J]. CIESC Journal, 2019, 70(7): 2699-2707.
配方 | w(SDBS)/% | w(n-butanol)/% | w(NaCl)/% | w(diesel)/% |
---|---|---|---|---|
a | 10 | 4.8 | 0.8 | 12.8 |
b | 10 | 1.6 | 0.8 | 12.8 |
c | 10 | 4.8 | 1.2 | 12.8 |
表1 微乳液配比
Table 1 Microemulsion formula
配方 | w(SDBS)/% | w(n-butanol)/% | w(NaCl)/% | w(diesel)/% |
---|---|---|---|---|
a | 10 | 4.8 | 0.8 | 12.8 |
b | 10 | 1.6 | 0.8 | 12.8 |
c | 10 | 4.8 | 1.2 | 12.8 |
土壤 | 密度/(g/cm3) | 容重/(g/cm3) | 孔隙度/% | pH | Zeta电位/mV | 有机质/% | 占比/% | ||
---|---|---|---|---|---|---|---|---|---|
<0.002 mm | 0.002~0.05 mm | 0.05~2 mm | |||||||
原始未污染土壤 | 2765.46 | 1475.61 | 47 | 6.59 | -24.3 | 1.68 | 0.98 | 8.58 | 90.44 |
回收土壤 | 2857.14 | 1534.68 | 46 | 7.39 | -41.0 | 4.23 | 0.34 | 6.25 | 93.41 |
表2 土壤理化性质数据
Table 2 Physicochemical property data of soil
土壤 | 密度/(g/cm3) | 容重/(g/cm3) | 孔隙度/% | pH | Zeta电位/mV | 有机质/% | 占比/% | ||
---|---|---|---|---|---|---|---|---|---|
<0.002 mm | 0.002~0.05 mm | 0.05~2 mm | |||||||
原始未污染土壤 | 2765.46 | 1475.61 | 47 | 6.59 | -24.3 | 1.68 | 0.98 | 8.58 | 90.44 |
回收土壤 | 2857.14 | 1534.68 | 46 | 7.39 | -41.0 | 4.23 | 0.34 | 6.25 | 93.41 |
油样 | 密度(20℃)/(g/cm3) | 饱和分/%(质量) | 芳香分/%(质量) | 胶质/%(质量) | 沥青质/%(质量) | 黏度(40℃)/(mPa·s) |
---|---|---|---|---|---|---|
原始油样 | 0.8642 | 74.74 | 12.73 | 12.02 | 0.49 | 17.14 |
回收油样 | 0.8338 | 85.68 | 8.20 | 5.92 | 0.19 | 14.58 |
表3 原油理化性质数据
Table 3 Data of physical and chemical properties of crude oil
油样 | 密度(20℃)/(g/cm3) | 饱和分/%(质量) | 芳香分/%(质量) | 胶质/%(质量) | 沥青质/%(质量) | 黏度(40℃)/(mPa·s) |
---|---|---|---|---|---|---|
原始油样 | 0.8642 | 74.74 | 12.73 | 12.02 | 0.49 | 17.14 |
回收油样 | 0.8338 | 85.68 | 8.20 | 5.92 | 0.19 | 14.58 |
图2 SDBS含量对不同含油率含油土壤脱除原油效果对比
Fig.2 Comparison of de-oil effects for oily soils with different oil contents using microemulsions with different SDBS content
1 | YangP, ZhouP, LiY, et al. Recent development in pyrolytic catalysts of oil sludge[J]. Petroleum Science and Technology, 2018, 36(2): 1-5. |
2 | 赵红艳, 韩毅, 吕娟, 等. 三种洗涤剂淋洗落地原油污染土壤的试验研究[J]. 东北师大学报(自然科学版), 2009, 41(1): 123-126. |
ZhaoH Y, HanY, LyuJ, et al. Test on three kinds of detergent washing the soils contaminated by crude oil[J]. Journal of Northeast Normal University (Natural Science Edition), 2009, 41(1): 123-126. | |
3 | 廉景燕, 哈莹, 黄磊, 等. 石油污染土壤物化修复前后生物毒性效应[J]. 环境科学, 2011, 32(3): 870-874. |
LianJ Y, HaY, HuangL, et al. Biological toxicity effect of petroleum contaminated soil before and after physicochemical remediation [J]. Environmental Science, 2011, 32(3): 870-874. | |
4 | 吴蔓莉, 张晨, 祁燕云, 等. 生物修复对黄土壤中石油烃的去除作用及影响因素[J]. 农业环境科学学报, 2018, 37(6): 1159-1165. |
WuM L, ZhangC, QiY Y, et al. Degradation of petroleum hydrocarbons during the bioremediation of cultivated loessial soil[J]. Journal of Agro Environment Science, 2018, 37(6): 1159-1165. | |
5 | SalagerJ L, ForgiariniA M, BullónJ. How to attain ultralow interfacial tension and three-phase behavior with surfactant formulation for enhanced oil recovery: a review (1): Optimum formulation for simple surfactant-oil-water ternary systems[J]. Journal of Surfactants and Detergents, 2013, 16(4): 449-472. |
6 | 李佳, 曹兴涛, 隋红, 等. 石油污染土壤修复技术研究现状与展望[J]. 石油学报(石油加工), 2017, 33(5): 811-833. |
LiJ, CaoX T, SuiH, et al. Overview of remediation technologies for petroleum-contaminated soils[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(5): 811-833. | |
7 | KellayH, BinksB P, HendrikxY, et al. Properties of surfactant monolayers in relation to microemulsion phase behaviour[J]. Advances in Colloid & Interface Science, 2017, 49: 85-112. |
8 | SalagerJ L, AntónR E, SabatiniD A, et al. Enhancing solubilization in microemulsions state of the art and current trends[J]. Journal of Surfactants and Detergents, 2005, 8(1): 3-21. |
9 | KonevaA S, SafonovaE A, KondrakhinaP S, et al. Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants Span 80/Tween 80[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518: 273-282. |
10 | SalagerJ L, ForgiariniA M, MárquezL, et al. How to attain an ultralow interfacial tension and three-phase behavior with surfactant formulation for enhanced oil recovery: a review (2): Performance improvement trends from Winsor s premise to currently proposed inter- and intra-molecular mixtures[J]. Journal of Surfactants and Detergents, 2013, 16(5): 631-663. |
11 | SantannaV C, CurbeloF D S, Castro DantasT N, et al. Microemulsion flooding for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2009, 66(3/4): 117-120. |
12 | OginoK, AbeM. Microemulsion formation with some typical surfactants[J]. Surface and Colloid Science, 1993, 15: 85-123. |
13 | BeraA, MandalA. Microemulsions: a novel approach to enhanced oil recovery: a review[J]. Journal of Petroleum Exploration and Production Technology, 2015, 5(3): 255-268. |
14 | 夏雪, 刘会娥, 丁传芹, 等. 酸碱性对十二烷基硫酸钠-正丁醇-煤油-水微乳液体系的影响[J]. 石油化工, 2011, 40(10): 1110-1114. |
XiaX, LiuH E, DingC Q, et al. Influence of acidity and alkalinity on sodium dodecyl sulfate-n-butanol-kerosene-water microemulsion system[J]. Petrochemical Technology, 2011, 40(10): 1110-1114. | |
15 | 夏雪, 刘会娥, 夏晔, 等. SDS/正丁醇/煤油/水微乳液体系的相转变研究[J]. 高校化学工程学报, 2011, 25(6): 911-915. |
XiaX, LiuH E, XiaY, et al. Phase inversion of sodium dodecyl sulfate (SDS)/n-butanol/kerosene/water microemulsion system[J]. J. Chem. Eng. Chinese Univ., 2011, 25(6): 911-915. | |
16 | 张孝坤, 刘会娥, 丁传芹, 等. 不同电解质对SDS/正丁醇/煤油/水微乳液体系的影响[J]. 高校化学工程学报, 2013, 27(6): 1089-1093. |
ZhangX K, LiuH E, DingC Q, et al. Influence of different types of electrolyte on sodium dodecyl sulfate/butanol/kerosene/water microemulsion system[J]. J. Chem. Eng. Chinese Univ., 2013, 27(6): 1089-1093. | |
17 | 张强, 汪晓东, 金日光. 油酸/氨水-醇-汽油-水微乳体系拟三元相图的分析[J]. 北京化工大学学报(自然科学版), 2001, 28(2): 37-39. |
ZhangQ, WangX D, JinR G. Analysis on the phase diagrams of pseudo-tricomponent of oleic acid/ammonia-gasoline-alcohol-water microemulsion system[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2001, 28(2): 37-39. | |
18 | 周雅文, 张高勇, 王红霞. 汽油微乳化技术研究[J]. 日用化学工业, 2002, ,32 (2): 1-4. |
ZhouY W, ZhangG Y, WangH X. Study on the technology of water-in-gasoline microemulsion [J]. China Surfactant Detergent & Cosmetics, 2002, 32(2): 1-4. | |
19 | 董松祥. 微乳化清洁柴油的配制及其性能研究[D]. 青岛: 中国石油大学, 2010. |
DongS X. Study on the preparation and performance of energy-saving and clean micro-emulsified diesel oil [D]. Qingdao: China University of Petroleum, 2010. | |
20 | 曹建喜, 罗立文, 董松祥, 等. 微乳柴油的研制及性能[J]. 中国石油大学学报(自然科学版), 2010, 34(4): 152-156. |
CaoJ X, LuoL W, DongS X, et al. Preparation and properties of micro-emulsified diesel [J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(4): 152-156. | |
21 | McclementsD J. Nanoemulsions versus microemulsions: terminology, differences, and similarities[J]. Soft Matter, 2012, 8(6): 1719-1729. |
22 | JeiraniZ, JanB M, AliB S, et al. Formulation, optimization and application of triglyceride microemulsion in enhanced oil recovery[J]. Industrial Crops and Products, 2013, 43(1): 6-14. |
23 | BellocqA M. Effects of alcohol chain length and salt on phase behavior and critical phenomena in SDS microemulsions[M]// Kumar P, Mittal K L. Handbook of Microemulsion Science and Technology. New York: Marcel Dekker, Inc., 1999: 139-184. |
24 | PeiG, ZhuY, CaiX, et al. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil[J]. Chemosphere, 2017, 185: 1112-1121. |
25 | QiaoB W, YeS , WuJ, et al. Surfactant‐enhanced electroosmotic flushing in a trichlorobenzene contaminated clayey soil[J]. Ground Water, 2018, 56(4): 673-679. |
26 | GuanZ, TangX Y, NishimuraT, et al. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil[J]. Journal of Environmental Sciences, 2018, 64(2): 197-206. |
27 | HernandezH W, EhlertW, TrabelsiS. Removal of crude oil residue from solid surfaces using microemulsions[J]. Fuel, 2019, 237: 398-404. |
28 | LowryE, SedghiM, GoualL. Molecular simulations of NAPL removal from mineral surfaces using microemulsions and surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506: 485-494. |
29 | DaoshanL I, DeminW, WanliK. Interfacial viscoelasticity of water/decan containing resins and asphatenes[J]. Journal of Chemical Industry & Engineering, 2003, 54(8): 1164-1168. |
30 | LiuH E, ZhouP P, WuZ H, et al. Solubilization behavior of organic mixtures in optimum Winsor type Ⅲ microemulsion systems of sodium dodecyl sulfate[J]. Journal of Surfactants and Detergents, 2018, 2(14): 497-507. |
31 | LiuH E, WuZ H, JingJ G, alet, Partition of n-butanol among phases and solubilization ability of Winsor type Ⅲ microemulsions[J]. Journal of Surfactants and Detergents, 2016, 19: 713-724. |
32 | 靖建歌, 刘会娥, 丁传芹, 等. 内标法研究Winsor Ⅲ型微乳液的醇分布及其增溶参数[J]. 化学工程, 2015, 43(1): 32-36. |
JingJ G, LiuH E, DingC Q, et al. Alcohol distribution and solubilization parameters of Winsor Ⅲ microemulsion using internal standard method[J]. Chemical Engineering (China), 2015, 43(1): 32-36. | |
33 | JavanbakhtG, GoualL. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks[J]. Journal of Contaminant Hydrology, 2016, 185/186: 61-73. |
[1] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[2] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[3] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[4] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[5] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[6] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[7] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[8] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[9] | 许贤伦, 钱旸, 张兴旺, 雷乐成. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033. |
[10] | 李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102. |
[11] | 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985. |
[12] | 常楚鑫, 徐黎婷, 殷嘉伦, 雒先, 贾洪伟. 浸没状态下的低压电润湿行为研究[J]. 化工学报, 2022, 73(4): 1673-1682. |
[13] | 徐一鸣, 袁华, 刘素丽, 李平, 严佩蓉, 赵曦, 卢俊华, 赵唯, 张学兰. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193. |
[14] | 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165. |
[15] | 杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||