化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6093-6108.DOI: 10.11949/0438-1157.20211163
收稿日期:
2021-08-16
修回日期:
2021-11-02
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
李春
作者简介:
张震(1998—),男,博士研究生,基金资助:
Zhen ZHANG1(),Xuecheng ZENG1,Lei QIN1,Chun LI1,2()
Received:
2021-08-16
Revised:
2021-11-02
Online:
2021-12-05
Published:
2021-12-22
Contact:
Chun LI
摘要:
在细胞工厂构建中设计-构建-测试-学习(design-build-test-learn,DBTL)循环是开发微生物细胞工厂的基本研究思路,其中设计环节尤为重要,然而传统的微生物细胞工厂设计方法主要依靠经验、费时费力、准确率低,影响了微生物细胞工厂的开发效率。当前,规模越发庞大的生物数据库和人工智能技术推动了微生物细胞工厂智能设计的快速发展,提升了在生物合成途径设计、调控元件设计和全局优化设计等方面的设计效率与应用。本文综述了微生物细胞工厂中途径预测、元件设计和途径与元件的组合三个环节中的智能设计工具,微生物细胞工厂智能设计的飞速发展将对生物制造领域产生变革性的影响。
中图分类号:
张震, 曾雪城, 秦磊, 李春. 微生物细胞工厂的智能设计进展[J]. 化工学报, 2021, 72(12): 6093-6108.
Zhen ZHANG, Xuecheng ZENG, Lei QIN, Chun LI. Intelligent design of microbial cell factory[J]. CIESC Journal, 2021, 72(12): 6093-6108.
工具 | 开发年份 | 基础数据库 | 反应规则工具 | 途径搜索算法 | 评价指标 | 文献 |
---|---|---|---|---|---|---|
XTMS | 2014 | MetaCyc, KEGG | SMARTS | 枚举 | 热力学可行性、酶序列可行性、途径长度、 化合物毒性 | [ |
enviPath | 2016 | EAWAG-BBD | SMILES | EAWAG-PPS | 基于机器学习的相对推理方法估计每个转换的概率 | [ |
ReactPred | 2016 | MetaCyc | 用户提供的SMARTS | 枚举 | 热力学可行性 | [ |
ReactionMiner | 2017 | KEGG | 反应规则(基于图) | 子图挖掘 | 途径长度、理论产量 | [ |
EcoSynther | 2017 | Rhea, KEGG | Graph | 基于概率方法 | 途径长度、理论产量 | [ |
novoStoic | 2018 | MetRxn | 分子指纹 | 混合整数线性规划 | 热力学可行性、化合物毒性、理论产量、市场利润 | [ |
RetroPath2.0 | 2018 | MetaNetX | 数据驱动的SMARTS(RetroRules) | 枚举 | 酶序列可行性、理论产量 | [ |
Transform-MinER | 2019 | KEGG | 数据驱动的SMARTS | 最短路径 | 底物相似性 | [ |
PrecursorFinder | 2019 | Literature | 分子指纹 | 最大公共子结构 | 底物相似性 | [ |
RetSynth | 2019 | Multiple | Stoichiometry matrix | 混合整数线性规划 | 途径长度、理论产量 | [ |
novoPathFinder | 2020 | Rhea, KEGG | SMIRKS | 启发式搜索 | 热力学可行性、酶序列可行性、途径长度、 化合物毒性、理论产量 | [ |
RetroPath RL | 2020 | MetaNetX | RetroRules | 枚举 | 底物相似性、酶序列可行性、化合物毒性 | [ |
BioNavi-NP | 2021 | MetaCyc, KEGG | AND-OR Tree | Transformer神经网络 | 底物相似性、途径长度 | [ |
ATLASx | 2021 | bioDB | BNICE.ch | 最短路径 | 热力学可行性、酶序列可行性、途径长度、 化合物毒性 | [ |
表1 生物逆合成工具
Table 1 Retrobiosynthesis tools
工具 | 开发年份 | 基础数据库 | 反应规则工具 | 途径搜索算法 | 评价指标 | 文献 |
---|---|---|---|---|---|---|
XTMS | 2014 | MetaCyc, KEGG | SMARTS | 枚举 | 热力学可行性、酶序列可行性、途径长度、 化合物毒性 | [ |
enviPath | 2016 | EAWAG-BBD | SMILES | EAWAG-PPS | 基于机器学习的相对推理方法估计每个转换的概率 | [ |
ReactPred | 2016 | MetaCyc | 用户提供的SMARTS | 枚举 | 热力学可行性 | [ |
ReactionMiner | 2017 | KEGG | 反应规则(基于图) | 子图挖掘 | 途径长度、理论产量 | [ |
EcoSynther | 2017 | Rhea, KEGG | Graph | 基于概率方法 | 途径长度、理论产量 | [ |
novoStoic | 2018 | MetRxn | 分子指纹 | 混合整数线性规划 | 热力学可行性、化合物毒性、理论产量、市场利润 | [ |
RetroPath2.0 | 2018 | MetaNetX | 数据驱动的SMARTS(RetroRules) | 枚举 | 酶序列可行性、理论产量 | [ |
Transform-MinER | 2019 | KEGG | 数据驱动的SMARTS | 最短路径 | 底物相似性 | [ |
PrecursorFinder | 2019 | Literature | 分子指纹 | 最大公共子结构 | 底物相似性 | [ |
RetSynth | 2019 | Multiple | Stoichiometry matrix | 混合整数线性规划 | 途径长度、理论产量 | [ |
novoPathFinder | 2020 | Rhea, KEGG | SMIRKS | 启发式搜索 | 热力学可行性、酶序列可行性、途径长度、 化合物毒性、理论产量 | [ |
RetroPath RL | 2020 | MetaNetX | RetroRules | 枚举 | 底物相似性、酶序列可行性、化合物毒性 | [ |
BioNavi-NP | 2021 | MetaCyc, KEGG | AND-OR Tree | Transformer神经网络 | 底物相似性、途径长度 | [ |
ATLASx | 2021 | bioDB | BNICE.ch | 最短路径 | 热力学可行性、酶序列可行性、途径长度、 化合物毒性 | [ |
1 | Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532. |
2 | Chen Z, Geng F, Zeng A P. Protein design and engineering of a de novo pathway for microbial production of 1, 3-propanediol from glucose[J]. Biotechnology Journal, 2015, 10(2): 284-289. |
3 | Liu S C, Liu Z J, Wei L J, et al. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica[J]. Journal of Biotechnology, 2020, 319: 74-81. |
4 | Sun W T, Xue H J, Liu H, et al. Controlling chemo-and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynthesis[J]. ACS Catalysis, 2020, 10(7): 4253-4260. |
5 | Chen G Q, Jiang X R. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis[J]. Synthetic and Systems Biotechnology, 2017, 2(3): 192-197. |
6 | Gulevich A Y, Skorokhodova A Y, Debabov V G. Study of the potential of the reversal of the fatty-acid beta-oxidation pathway for stereoselective biosynthesis of (S)-1, 3-butanediol from glucose by recombinant Escherichia coli strains[J]. Applied Biochemistry and Microbiology, 2020, 56(8): 822-827. |
7 | Zheng S J, Zeng T, Li C T, et al. BioNavi-NP: biosynthesis navigator for natural products[J]. arXiv, 2021, arXiv:. |
8 | Hodgman C E, Jewett M C. Cell-free synthetic biology: thinking outside the cell[J]. Metabolic Engineering, 2012, 14(3): 261-269. |
9 | Carbonell P, Parutto P, Herisson J, et al. XTMS: pathway design in an eXTended metabolic space[J]. Nucleic Acids Research, 2014, 42(W1): W389-W394. |
10 | Fehér T, Planson A G, Carbonell P, et al. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering[J]. Biotechnology Journal, 2014, 9(11): 1446-1457. |
11 | Delépine B, Duigou T, Carbonell P, et al. RetroPath 2.0: a retrosynthesis workflow for metabolic engineers[J]. Metabolic Engineering, 2018, 45: 158-170. |
12 | Koch M, Duigou T, Faulon J L. Reinforcement learning for bioretrosynthesis[J]. ACS Synthetic Biology, 2020, 9(1): 157-168. |
13 | Ding S Z, Tian Y, Cai P L, et al. novoPathFinder: a webserver of designing novel-pathway with integrating GEM-model[J]. Nucleic Acids Research, 2020, 48(W1): W477-W487. |
14 | Wicker J, Lorsbach T, Gütlein M, et al. enviPath-the environmental contaminant biotransformation pathway resource[J]. Nucleic Acids Research, 2016, 44(D1): D502-D508. |
15 | Sivakumar T V, Giri V, Park J H, et al. ReactPred: a tool to predict and analyze biochemical reactions[J]. Bioinformatics, 2016, 32(22): 3522-3524. |
16 | Sankar A, Ranu S, Raman K. Predicting novel metabolic pathways through subgraph mining[J]. Bioinformatics, 2017, 33(24): 3955-3963. |
17 | Ding S Z, Liao X P, Tu W Z, et al. EcoSynther: a customized platform to explore the biosynthetic potential in E. coli[J]. ACS Chemical Biology, 2017, 12(11): 2823-2829. |
18 | Kumar A, Wang L, Ng C Y, et al. Pathway design using de novo steps through uncharted biochemical spaces[J]. Nature Communications, 2018, 9: 184. |
19 | Tyzack J D, Ribeiro A J M, Borkakoti N, et al. Exploring chemical biosynthetic design space with Transform-MinER[J]. ACS Synthetic Biology, 2019, 8(11): 2494-2506. |
20 | Yuan L, Tian Y, Ding S, et al. PrecursorFinder: a customized biosynthetic precursor explorer[J]. Bioinformatics, 2019, 35(9): 1603-1604. |
21 | Whitmore L S, Nguyen B, Pinar A, et al. RetSynth: determining all optimal and sub-optimal synthetic pathways that facilitate synthesis of target compounds in chassis organisms[J]. BMC Bioinformatics, 2019, 20(1): 1-14. |
22 |
Mohammadi-Peyhani H, Hafner J, Sveshnikova A, et al. ATLASx: a computational map for the exploration of biochemical space[J]. bioRxiv, 2021, DOI:10.1101/2021.02.17.431583.
DOI |
23 | Visani G M, Hughes M C, Hassoun S. Enzyme promiscuity prediction using hierarchy-informed multi-label classification[J]. Bioinformatics, 2021, 37(14): 2017-2024. |
24 | Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms[J]. Nucleic Acids Research, 2021, 49(D1): D545-D551. |
25 | Shinbo Y, Nakamura Y, Altaf-Ul-amin M, et al. KNApSAcK: A Comprehensive Species-Metabolite Relationship Database[M]. Springer Berlin Heidelberg, 2006: 165-181. |
26 | Banerjee P, Erehman J, Gohlke B O, et al. Super NaturalⅡ—a database of natural products[J]. Nucleic Acids Research, 2015, 43(D1): D935-D939. |
27 | Hafner J, MohammadiPeyhani H, Sveshnikova A, et al. Updated ATLAS of biochemistry with new metabolites and improved enzyme prediction power[J]. ACS Synthetic Biology, 2020, 9(6): 1479-1482. |
28 | SMILES Weininger D., a chemical language and information system (1): Introduction to methodology and encoding rules[J]. Journal of Chemical Information and Modeling, 1988, 28(1): 31-36. |
29 | Hanson R M. Jmol SMILES and Jmol SMARTS: specifications and applications[J]. Journal of Cheminformatics, 2016, 8: 50. |
30 | Ehrt C, Krause B, Schmidt R, et al. SMARTS.plus—a toolbox for chemical pattern design[J]. Molecular Informatics, 2020, 39(12): 2000216. |
31 | Hattori M, Okuno Y, Goto S, et al. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways[J]. Journal of the American Chemical Society, 2003, 125(39): 11853-11865. |
32 | Landrum G. RDKit: open-source cheminformatics software[EB/OL]. [2021-08-01] . |
33 | Yap C W. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints[J]. Journal of Computational Chemistry, 2011, 32(7): 1466-1474. |
34 | Duigou T, du Lac M, Carbonell P, et al. RetroRules: a database of reaction rules for engineering biology[J]. Nucleic Acids Research, 2019, 47(D1): D1229-D1235. |
35 | Plehiers P P, Marin G B, Stevens C V, et al. Automated reaction database and reaction network analysis: extraction of reaction templates using cheminformatics[J]. Journal of Cheminformatics, 2018, 10(1): 1-18. |
36 | Grzybowski B A, Szymkuć S, Gajewska E P, et al. Chematica: a story of computer code that started to think like a chemist[J]. Chem, 2018, 4(3): 390-398. |
37 | Finnigan W, Hepworth L J, Flitsch S L, et al. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades[J]. Nature Catalysis, 2021, 4(2): 98-104. |
38 | Ni Z F, Stine A E, Tyo K E J, et al. Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design[J]. Metabolic Engineering, 2021, 65: 79-87. |
39 | Yamanishi Y, Hattori M, Kotera M, et al. E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs[J]. Bioinformatics, 2009, 25(12): i179-i186. |
40 | Moriya Y, Yamada T, Okuda S, et al. Identification of enzyme genes using chemical structure alignments of substrate-product pairs[J]. Journal of Chemical Information and Modeling, 2016, 56(3): 510-516. |
41 | Rahman S A, Cuesta S M, Furnham N, et al. EC-BLAST: a tool to automatically search and compare enzyme reactions[J]. Nature Methods, 2014, 11(2): 171-174. |
42 | Carbonell P, Wong J, Swainston N, et al. Selenzyme: enzyme selection tool for pathway design[J]. Bioinformatics, 2018, 34(12): 2153-2154. |
43 | Hadadi N, MohammadiPeyhani H, Miskovic L, et al. Enzyme annotation for orphan and novel reactions using knowledge of substrate reactive sites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15): 7298-7307. |
44 |
Schmid E, Fenner K. enviLink: a database linking contaminant biotransformation rules to enzyme classes in support of functional association mining[J]. bioRxiv, 2021, DOI:10.1101/2021.05.20.442588.
DOI |
45 | McClymont K, Soyer O S. Metabolic tinker: an online tool for guiding the design of synthetic metabolic pathways[J]. Nucleic Acids Research, 2013, 41(11): e113. |
46 | Hädicke O, von Kamp A, Aydogan T, et al. OptMDFpathway: identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli[J]. PLoS Computational Biology, 2018, 14(9): e1006492. |
47 | Beber M E, Gollub M G, Mozaffari D, et al. eQuilibrator 3.0: a platform for the estimation of thermodynamic constants[J]. arXiv, 2021, arXiv: . |
48 |
Wang L, Upadhyay V, Maranas C D. dGPredictor: automated fragmentation method for metabolic reaction free energy prediction and de novo pathway design[J]. bioRxiv, 2021, DOI:10.1101/2021.03. 15.434460.
DOI |
49 | Chou C H, Chang W C, Chiu C M, et al. FMM: a web server for metabolic pathway reconstruction and comparative analysis[J]. Nucleic Acids Res., 2009, 37(): W129-W134. |
50 | Pey J, Prada J, Beasley J E, et al. Path finding methods accounting for stoichiometry in metabolic networks[J]. Genome Biology, 2011, 12(5): R49. |
51 | Tervo C J, Reed J L. MapMaker and PathTracer for tracking carbon in genome-scale metabolic models[J]. Biotechnology Journal, 2016, 11(5): 648-661. |
52 |
Hafner J, Hatzimanikatis V. Finding metabolic pathways in large networks through atom-conserving substrate-product pairs[J]. bioRxiv, 2020, DOI:10.1101/2020.11.25.398453.
DOI |
53 | Motwalli O, Uludag M, MijakovicⅠ, et al. PATHcre8: a tool that facilitates the searching for heterologous biosynthetic routes[J]. ACS Synthetic Biology, 2020, 9(12): 3217-3227. |
54 | Pharkya P, Burgard A P, Maranas C D. OptStrain: a computational framework for redesign of microbial production systems[J]. Genome Research, 2004, 14(11): 2367-2376. |
55 | Rodrigo G, Carrera J, Prather K J, et al. DESHARKY: automatic design of metabolic pathways for optimal cell growth[J]. Bioinformatics, 2008, 24(21): 2554-2556. |
56 | Campodonico M A, Andrews B A, Asenjo J A, et al. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path[J]. Metabolic Engineering, 2014, 25: 140-158. |
57 | Kuwahara H, Alazmi M, Cui X, et al. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind[J]. Nucleic Acids Research, 2016, 44(W1): W217-W225. |
58 | Ewald J, Bartl M, Dandekar T, et al. Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism[J]. PLoS Computational Biology, 2017, 13(2): e1005371. |
59 | Liverman C T. Internet Access to the National Library of Medicine's Toxicology and Environmental Health Databases[M]. Washington, D.C.: National Academies Press, 1998. |
60 | Richard A M, Williams C R. Distributed structure-searchable toxicity (DSSTox) public database network: a proposal[J]. Mutation Research, 2002, 499(1): 27-52. |
61 | Wishart D, Arndt D, Pon A, et al. T3DB: the toxic exposome database[J]. Nucleic Acids Research, 2015, 43(D1): D928-D934. |
62 | Sosnin S, Karlov D, Tetko I V, et al. Comparative study of multitask toxicity modeling on a broad chemical space[J]. Journal of Chemical Information and Modeling, 2019, 59(3): 1062-1072. |
63 | Planson A G, Carbonell P, Paillard E, et al. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli[J]. Biotechnology and Bioengineering, 2012, 109(3): 846-850. |
64 | Fernández-Castané A, Fehér T, Carbonell P, et al. Computer-aided design for metabolic engineering[J]. Journal of Biotechnology, 2014, 192: 302-313. |
65 | Lin G M, Warden-Rothman R L, Voigt C A. Retrosynthetic design of metabolic pathways to chemicals not found in nature[J]. Current Opinion in Systems Biology, 2019, 14:82-107. |
66 | Coley C W, Rogers L, Green W H, et al. SCScore: synthetic complexity learned from a reaction corpus[J]. Journal of Chemical Information and Modeling, 2018, 58(2): 252-261. |
67 | Kim D I, Chae T U, Kim H U, et al. Microbial production of multiple short-chain primary amines via retrobiosynthesis[J]. Nature Communications, 2021, 12: 173. |
68 |
Vigrass E, Ahsanul Islam M. Designing novel biochemical pathways to commodity chemicals using ReactPRED and RetroPath2.0[J]. bioRxiv, 2021, DOI:10.1101/2020.12.31.425007.
DOI |
69 | Wang J, Wu Y F, Sun X X, et al. De novo biosynthesis of glutarate via α-keto acid carbon chain extension and decarboxylation pathway in Escherichia coli[J]. ACS Synthetic Biology, 2017, 6(10): 1922-1930. |
70 | Cho A, Yun H, Park J H, et al. Prediction of novel synthetic pathways for the production of desired chemicals[J]. BMC Systems Biology, 2010, 4: 35. |
71 | Hafner J, Payne J, MohammadiPeyhani H, et al. A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives[J]. Nature Communications, 2021, 12: 1760. |
72 | Jervis A, Carbonell P, Taylor S, et al. SelProm: a queryable and predictive expression vector selection tool for Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(7): 1478-1483. |
73 |
Zhao M, Zhou S H, Wu L, et al. Model-driven promoter strength prediction based on a fine-tuned synthetic promoter library in Escherichia coli[J]. bioRxiv, 2020, DOI: 10.1101/2020.06.25.170365.
DOI |
74 | Wang Y, Wang H, Wei L, et al. Synthetic promoter design in Escherichia coli based on a deep generative network[J]. Nucleic Acids Research, 2020, 48(12): 6403-6412. |
75 | Kotopka B J, Smolke C D. Model-driven generation of artificial yeast promoters[J]. Nature Communications, 2020, 11: 2113. |
76 | Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sites to control protein expression[J]. Nature Biotechnology, 2009, 27(10): 946-950. |
77 | Na D, Lee D. RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression[J]. Bioinformatics, 2010, 26(20): 2633-2634. |
78 | Jeschek M, Gerngross D, Panke S. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort[J]. Nature Communications, 2016, 7: 11163. |
79 | Swainston N, Dunstan M, Jervis A J, et al. PartsGenie: an integrated tool for optimizing and sharing synthetic biology parts[J]. Bioinformatics, 2018, 34(13):2327-2329. |
80 | Ding N, Yuan Z, Zhang X, et al. Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor[J]. Nucleic Acids Research, 2020, 48(18): 10602-10613. |
81 | Carbonell P, Jervis A J, Robinson C J, et al. An automated design-build-test-learn pipeline for enhanced microbial production of fine chemicals[J]. Communications Biology, 2018, 1: 66. |
82 | Kobilinsky A, Monod H, Bailey R A. Automatic generation of generalised regular factorial designs[J]. Computational Statistics & Data Analysis, 2017, 113: 311-329. |
83 | Singleton C, Gilman J, Rollit J, et al. A design of experiments approach for the rapid formulation of a chemically defined medium for metabolic profiling of industrially important microbes[J]. PLoS One, 2019, 14(6): e0218208. |
84 | Radivojević T, Costello Z, Workman K, et al. A machine learning automated recommendation tool for synthetic biology[J]. Nature Communications, 2020, 11: 4879. |
85 | Zhang J, Petersen S D, Radivojevic T, et al. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism[J]. Nature Communications, 2020, 11: 4880. |
86 | Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
87 | Pennisi E. Protein structure prediction now easier, faster[J]. Science, 2021, 373(6552): 262-263. |
[1] | 毕浩然, 张洋, 王凯, 徐晨晨, 霍奕影, 陈必强, 谭天伟. 微生物制造绿色化学品研究进展[J]. 化工学报, 2023, 74(1): 1-13. |
[2] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[3] | 郑煜堃, 孙青, 陈振, 于慧敏. 微生物细胞工厂生产化学品的研究进展——以几种典型小分子和大分子化学品为例[J]. 化工学报, 2021, 72(12): 6109-6121. |
[4] | 秦磊, 俞杰, 宁小钰, 孙文涛, 李春. 合成生物系统构建与绿色生物“智”造[J]. 化工学报, 2020, 71(9): 3979-3994. |
[5] | 薛海洁, 王颖, 李春. 植物天然产物的微生物合成与转化[J]. 化工学报, 2019, 70(10): 3825-3835. |
[6] | 袁海波, 李江华, 刘龙, 堵国成, 陈坚. 基于系统生物学和合成生物学的重要平台化学品生物制造的研究进展[J]. 化工学报, 2016, 67(1): 129-139. |
[7] | 赵雨佳, 张根林, 周晓宏, 李春. 核糖核酸开关用于微生物细胞工厂的智能与精细调控[J]. 化工学报, 2015, 66(10): 3811-2819. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||