化工学报 ›› 2022, Vol. 73 ›› Issue (2): 521-534.DOI: 10.11949/0438-1157.20211164
收稿日期:
2021-08-16
修回日期:
2021-11-17
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
吕波,李春
作者简介:
孙怡(1997—),女,硕士研究生,基金资助:
Yi SUN1(),Teng ZHANG1,Bo LYU1(),Chun LI1,2()
Received:
2021-08-16
Revised:
2021-11-17
Online:
2022-02-05
Published:
2022-02-18
Contact:
Bo LYU,Chun LI
摘要:
在当今倡导化合物绿色制造的背景下,利用微生物细胞工厂合成新化合物或提高化合物的产量是绿色化工技术发展的重要方向之一。但目标化合物的低产是微生物细胞工厂合成的常见问题。解决这个瓶颈的有效方法之一是在微生物细胞中设计生物传感器来监测和调控化合物的生物合成。详细介绍了胞内生物传感器的种类和作用机制,重点阐释了生物传感器如何与微生物细胞工厂中产物合成途径设计相结合,从而提高细胞工厂的精细调控和目标产物的合成能力。最后还讨论了目前胞内生物传感器设计所面临的挑战和可行的解决方案。
中图分类号:
孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534.
Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors[J]. CIESC Journal, 2022, 73(2): 521-534.
胞内生物传感器的关键元件 | 响应因子 | 微生物细胞宿主 | 文献 | ||
---|---|---|---|---|---|
转录调节元件 | 启动子 | gadE, rstA | 法尼基焦磷酸 | 大肠杆菌 | [ |
hmgA | 尿黑酸 | 铜绿假单胞菌 | [ | ||
araBAD | 脱氧紫色杆菌素 | 大肠杆菌 | [ | ||
srfA | 细胞密度 | 枯草芽孢杆菌 | [ | ||
gas | 衣康酸 | 黑曲霉 | [ | ||
hsp12, hsp26 | 高温,乙酸 | 酿酒酵母 | [ | ||
转录因子 | FapR | 丙二酰辅酶A | 酿酒酵母 | [ | |
Lrp | L-缬氨酸 | 谷氨酸棒杆菌 | [ | ||
AgaR | L-精氨酸 | 钝齿棒杆菌 | [ | ||
Saro-0803 | 白藜芦醇 | 大肠杆菌 | [ | ||
翻译调节元件 | 核糖体开关 | 茶碱RNA适体 | 茶碱 | 大肠杆菌 | [ |
菠菜RNA适体 | 硫胺素5′-焦磷酸, S-腺苷-同型半胱氨酸 | 大肠杆菌 | [ | ||
荧光RNA适体 | 胍 | 大肠杆菌 | [ | ||
蛋白质 | G蛋白偶联受体 | 丁香酚、香豆素、二氢茉莉酮和苯乙酮 | 酿酒酵母 | [ | |
双组分系统 | 苹果酸 | 大肠杆菌 | [ | ||
F?rster共振能量转移系统 | L-2-羟基戊二酸 | 恶臭假单胞菌 | [ | ||
酶偶联 | l-3,4-二羟基苯丙氨酸 | 酿酒酵母 | [ | ||
木糖 | 酿酒酵母 | [ | |||
乳酸 | 大肠杆菌 | [ |
表1 胞内生物传感器的分类及相关举例
Table 1 Classification of intracellular biosensors and related examples
胞内生物传感器的关键元件 | 响应因子 | 微生物细胞宿主 | 文献 | ||
---|---|---|---|---|---|
转录调节元件 | 启动子 | gadE, rstA | 法尼基焦磷酸 | 大肠杆菌 | [ |
hmgA | 尿黑酸 | 铜绿假单胞菌 | [ | ||
araBAD | 脱氧紫色杆菌素 | 大肠杆菌 | [ | ||
srfA | 细胞密度 | 枯草芽孢杆菌 | [ | ||
gas | 衣康酸 | 黑曲霉 | [ | ||
hsp12, hsp26 | 高温,乙酸 | 酿酒酵母 | [ | ||
转录因子 | FapR | 丙二酰辅酶A | 酿酒酵母 | [ | |
Lrp | L-缬氨酸 | 谷氨酸棒杆菌 | [ | ||
AgaR | L-精氨酸 | 钝齿棒杆菌 | [ | ||
Saro-0803 | 白藜芦醇 | 大肠杆菌 | [ | ||
翻译调节元件 | 核糖体开关 | 茶碱RNA适体 | 茶碱 | 大肠杆菌 | [ |
菠菜RNA适体 | 硫胺素5′-焦磷酸, S-腺苷-同型半胱氨酸 | 大肠杆菌 | [ | ||
荧光RNA适体 | 胍 | 大肠杆菌 | [ | ||
蛋白质 | G蛋白偶联受体 | 丁香酚、香豆素、二氢茉莉酮和苯乙酮 | 酿酒酵母 | [ | |
双组分系统 | 苹果酸 | 大肠杆菌 | [ | ||
F?rster共振能量转移系统 | L-2-羟基戊二酸 | 恶臭假单胞菌 | [ | ||
酶偶联 | l-3,4-二羟基苯丙氨酸 | 酿酒酵母 | [ | ||
木糖 | 酿酒酵母 | [ | |||
乳酸 | 大肠杆菌 | [ |
图3 转录调节元件作为生物传感器(a) 基于启动子的生物传感器;(b) 基于转录激活因子的生物传感器;(c) 基于转录抑制因子的生物传感器
Fig.3 Biosensors based on transcription regulatory elements(a) biosensor based on promoter; (b) biosensor based on transcription activator; (c) biosensor based on transcription inhibitor
图4 “核糖体开关”生物传感器工作示意图(a) 通过抑制抗终止子停止转录; (b) 通过隔离核糖体结合位点翻译进行转录; (c) 通过隔离核糖体结合位点翻译停止转录;(d) 通过mRNA切割进行后转录
Fig.4 Schematic diagram of the “ribosomal switch” biosensors(a) stop transcription by inhibiting anti-terminator; (b) transcribing by isolating ribosome binding site translation; (c) stop transcription by isolating ribosome binding site translation; (d) post-transcription by mRNA cleavage
图5 蛋白质生物传感器工作示意图(a) 基于G蛋白偶联受体的生物传感器; (b) 双组分系统生物传感器; (c) F?rster共振能量转移生物传感器; (d) 酶偶联生物传感器
Fig.5 Schematic diagram of protein biosensors work(a) G protein-coupled receptor-based biosensor; (b) two-component system biosensor; (c) F?rster resonance energy transfer biosensor; (d) enzyme-coupled biosensor
胞内生物传感器类型 | 关键元件 | 应用目的 | 目标化合物 | 微生物细胞宿主 | 文献 |
---|---|---|---|---|---|
基于转录因子 | ChnR | 高通量筛选优良菌株 | 内酰胺 | 大肠杆菌 | [ |
基于转录因子 | FapR | 高通量筛选优良菌株 | 丙二酰辅酶A | 大肠杆菌 | [ |
基于转录因子 | XylR | 高通量筛选优良菌株 | 木糖 | 酿酒酵母 | [ |
基于转录因子 | SoxR | 高通量筛选优良菌株 | NADPH | 大肠杆菌 | [ |
基于转录因子 | C4-lysR | 高通量筛选优良菌株 | 3-羟基丙酸 | 大肠杆菌 | [ |
核糖体开关 | glmS | 高通量筛选优良菌株 | 乙酰神经氨酸 | 大肠杆菌 | [ |
核糖体开关 | 锤头状核酶 | 高通量筛选优良菌株 | 新霉素 | 酿酒酵母 | [ |
核糖体开关 | 色氨酸RNA适体 | 高通量筛选优良菌株 | 色氨酸 | 大肠杆菌 | [ |
核糖体开关 | glmS | 高通量筛选优良菌株 | N-乙酰氨基葡萄糖 | 酿酒酵母 | [ |
基于转录因子 | FadR | 动态调控代谢平衡 | 香草酸 | 大肠杆菌 | [ |
基于转录因子 | IpsA | 动态调控代谢平衡 | D-葡萄糖二酸 | 大肠杆菌 | [ |
基于蛋白质 | 双组分系统 | 动态调控代谢平衡 | α-法尼烯 | 酿酒酵母 | [ |
基于转录因子 | LuxR,TetR | 动态调控代谢平衡 | 酪醇,红景天苷 | 大肠杆菌 | [ |
基于启动子 | AraCmev | 动态调控代谢平衡 | 甲羟戊酸 | 大肠杆菌 | [ |
基于转录因子 | FedR,PadR | 动态调控代谢平衡 | 柚皮素 | 大肠杆菌 | [ |
表2 胞内生物传感器应用于微生物细胞工厂的经典案例
Table 2 Classic cases of intracellular biosensors applied to microbial cell factories
胞内生物传感器类型 | 关键元件 | 应用目的 | 目标化合物 | 微生物细胞宿主 | 文献 |
---|---|---|---|---|---|
基于转录因子 | ChnR | 高通量筛选优良菌株 | 内酰胺 | 大肠杆菌 | [ |
基于转录因子 | FapR | 高通量筛选优良菌株 | 丙二酰辅酶A | 大肠杆菌 | [ |
基于转录因子 | XylR | 高通量筛选优良菌株 | 木糖 | 酿酒酵母 | [ |
基于转录因子 | SoxR | 高通量筛选优良菌株 | NADPH | 大肠杆菌 | [ |
基于转录因子 | C4-lysR | 高通量筛选优良菌株 | 3-羟基丙酸 | 大肠杆菌 | [ |
核糖体开关 | glmS | 高通量筛选优良菌株 | 乙酰神经氨酸 | 大肠杆菌 | [ |
核糖体开关 | 锤头状核酶 | 高通量筛选优良菌株 | 新霉素 | 酿酒酵母 | [ |
核糖体开关 | 色氨酸RNA适体 | 高通量筛选优良菌株 | 色氨酸 | 大肠杆菌 | [ |
核糖体开关 | glmS | 高通量筛选优良菌株 | N-乙酰氨基葡萄糖 | 酿酒酵母 | [ |
基于转录因子 | FadR | 动态调控代谢平衡 | 香草酸 | 大肠杆菌 | [ |
基于转录因子 | IpsA | 动态调控代谢平衡 | D-葡萄糖二酸 | 大肠杆菌 | [ |
基于蛋白质 | 双组分系统 | 动态调控代谢平衡 | α-法尼烯 | 酿酒酵母 | [ |
基于转录因子 | LuxR,TetR | 动态调控代谢平衡 | 酪醇,红景天苷 | 大肠杆菌 | [ |
基于启动子 | AraCmev | 动态调控代谢平衡 | 甲羟戊酸 | 大肠杆菌 | [ |
基于转录因子 | FedR,PadR | 动态调控代谢平衡 | 柚皮素 | 大肠杆菌 | [ |
1 | Otero-Muras I, Carbonell P. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing[J]. Metabolic Engineering, 2021, 63: 61-80. |
2 | Orsi E, Beekwilder J, Eggink G, et al. The transition of Rhodobacter sphaeroides into a microbial cell factory[J]. Biotechnology and Bioengineering, 2021, 118(2): 531-541. |
3 | Yang Y, Lin Y, Li L, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products[J]. Metabolic Engineering, 2015, 29: 217-226. |
4 | Humphreys C M, Minton N P. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas[J]. Current Opinion in Biotechnology, 2018, 50: 174-181. |
5 | Wang J, Zhang R H, Zhang Y, et al. Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production [J]. Metabolic Engineering, 2019, 55: 191-200. |
6 | Jiang T, Li C Y, Teng Y X, et al. Recent advances in improving metabolic robustness of microbial cell factories[J]. Current Opinion in Biotechnology, 2020, 66: 69-77. |
7 | Fujiwara R, Noda S, Tanaka T, et al. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate[J]. Nature Communications, 2020, 11: 279. |
8 | Luo X Z, Reiter M A, D'Espaux L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567(7746): 123-126. |
9 | Tian R Z, Liu Y F, Chen J R, et al. Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis[J]. Metabolic Engineering, 2019, 55: 131-141. |
10 | Yu Y, Chang P, Yu H, et al. Productive amyrin synthases for efficient α-amyrin synthesis in engineered Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2018, 7(10): 2391-2402. |
11 | Yu Y, Rasool A, Liu H, et al. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool[J]. Metabolic Engineering, 2020, 62: 72-83. |
12 | Liu D Y, Jin J, Gao M, et al. Dataset for the estimation of costs for direct contact condenser[J]. Data in Brief, 2018, 20: 535-543. |
13 | Jang S, Jang S, Xiu Y, et al. Development of artificial riboswitches for monitoring of naringenin in vivo[J]. ACS Synthetic Biology, 2017, 6(11): 2077-2085. |
14 | Purdy H M, Reed J L. Evaluating the capabilities of microbial chemical production using genome-scale metabolic models[J]. Current Opinion in Systems Biology, 2017, 2: 91-97. |
15 | Nielsen A A K, Der B S, Shin J, et al. Genetic circuit design automation[J]. Science, 2016, 352(6281): aac7341. |
16 | Chae T U, Choi S Y, Kim J W, et al. Recent advances in systems metabolic engineering tools and strategies[J]. Current Opinion in Biotechnology, 2017, 47: 67-82. |
17 | Hanko E K R, Minton N P, Malys N. A transcription factor-based biosensor for detection of itaconic acid[J]. ACS Synthetic Biology, 2018, 7(5): 1436-1446. |
18 | Ghazi Z, Jahanshahi S, Li Y. RiboFACSeq: a new method for investigating metabolic and transport pathways in bacterial cells by combining a riboswitch-based sensor, fluorescence-activated cell sorting and next-generation sequencing[J]. PLoS One, 2017, 12(12): e0188399. |
19 | Kalkreuter E, Keeler A M, Malico A A, et al. Development of a genetically encoded biosensor for detection of polyketide synthase extender units in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(6): 1391-1400. |
20 | Johnson A O, Gonzalez-Villanueva M, Wong L, et al. Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories[J]. Metabolic Engineering, 2017, 44: 253-264. |
21 | Doong S J, Gupta A, Prather K L J. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2964-2969. |
22 | de Paepe B, Maertens J, Vanholme B, et al. Modularization and response curve engineering of a naringenin-responsive transcriptional biosensor[J]. ACS Synthetic Biology, 2018, 7(5): 1303-1314. |
23 | Liu D, Zhang F. Metabolic feedback circuits provide rapid control of metabolite dynamics[J]. ACS Synthetic Biology, 2018, 7(2): 347-356. |
24 | Cevenini L, Calabretta M M, Lopreside A, et al. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity[J]. Analytical and Bioanalytical Chemistry, 2016, 408(30): 8859-8868. |
25 | Gui Q Y, Lawson T, Shan S Y, et al. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics[J]. Sensors, 2017, 17(7): 1623. |
26 | Bronder T S, Poghossian A, Scheja S, et al. DNA immobilization and hybridization detection by the intrinsic molecular charge using capacitive field-effect sensors modified with a charged weak polyelectrolyte layer[J]. ACS Applied Materials & Interfaces, 2015, 7(36): 20068-20075. |
27 | Ma Q, Zhang Q W, Xu Q Y, et al. Systems metabolic engineering strategies for the production of amino acids[J]. Synthetic and Systems Biotechnology, 2017, 2(2): 87-96. |
28 | Yeom S J, Kim M, Kwon K K, et al. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts[J]. Nature Communications, 2018, 9: 5053. |
29 | D'Ambrosio V, Jensen M K. Lighting up yeast cell factories by transcription factor-based biosensors[J]. FEMS Yeast Research, 2017, 17(7): fox076. |
30 | Dahl R H, Zhang F Z, Alonso-Gutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11): 1039-1046. |
31 | Dhyani R, Shankar K, Bhatt A, et al. Homogentisic acid-based whole-cell biosensor for detection of alkaptonuria disease[J]. Analytical Chemistry, 2021, 93(10): 4521-4527. |
32 | Rodrigues A L, Becker J, de Souza Lima A O, et al. Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol[J]. Biotechnology and Bioengineering, 2014, 111(11): 2280-2289. |
33 | Guan C, Cui W, Cheng J, et al. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis [J]. Microbial Cell Factories, 2015, 14: 150. |
34 | Yin X, Shin H D, Li J H, et al. P gas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus niger[J].Applied and Environmental Microbiology, 2017, 83(6): aem03222-16. |
35 | Xiong L, Zeng Y, Tang R Q, et al. Condition-specific promoter activities in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2018, 17(1): 58. |
36 | Dabirian Y, Li X, Chen Y, et al. Expanding the dynamic range of a transcription factor-based biosensor in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2019, 8(9):1968-1975. |
37 | Stella R G, Gertzen C G W, Smits S H J, et al. Biosensor-based growth-coupling and spatial separation as an evolution strategy to improve small molecule production of Corynebacterium glutamicum[J]. Metabolic Engineering, 2021, 68: 162-173. |
38 | 邵辉峰, 张斌, 王吕, 等. 钝齿棒杆菌FarR对精氨酸生物合成基因簇转录水平的影响及其与ArgR的关系[J]. 微生物学报, 2014, 54(6): 635-640. |
Shao H F, Zhang B, Wang L, et al. Effect of FarR on transcriptional levels of arginine biosynthetic genes in Corynebacterium crenatum AS 1.542 and its relationship with ArgR[J]. Acta Microbiologica Sinica, 2014, 54(6): 635-640. | |
39 | Sun H, Zhao H, Ang E L. A new biosensor for stilbenes and a cannabinoid enabled by genome mining of a transcriptional regulator[J]. ACS Synthetic Biology, 2020, 9(4): 698-705. |
40 | Wachsmuth M, Findeiß S, Weissheimer N, et al. De novo design of a synthetic riboswitch that regulates transcription termination[J]. Nucleic Acids Research, 2013, 41(4): 2541-2551. |
41 | You M, Jaffrey S R. Structure and mechanism of RNA mimics of green fluorescent protein[J]. Annual Review of Biophysics, 2015, 44: 187-206. |
42 | You M, Litke J L, Jaffrey S R. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(21): E2756-E2765. |
43 | Su Y, Hickey S F, Keyser S G, et al. In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-l-homocysteine (SAH)[J]. Journal of the American Chemical Society, 2016, 138(22): 7040-7047. |
44 | Manna S, Truong J, Hammond M C. Guanidine biosensors enable comparison of cellular turn-on kinetics of riboswitch-based biosensor and reporter[J]. ACS Synthetic Biology, 2021, 10(3): 566-578. |
45 | Müller M, Ausländer S, Spinnler A, et al. Designed cell consortia as fragrance-programmable analog-to-digital converters[J]. Nature Chemical Biology, 2017, 13(3): 309-316. |
46 | Ganesh I, Ravikumar S, Yoo I K, et al. Construction of malate-sensing Escherichia coli by introduction of a novel chimeric two-component system[J]. Bioprocess and Biosystems Engineering, 2015, 38(4): 797-804. |
47 | Kang Z Q, Zhang M M, Gao K Y, et al. An l-2-hydroxyglutarate biosensor based on specific transcriptional regulator LhgR[J]. Nature Communications, 2021, 12: 3619. |
48 | Lin J L, Ekas H, Markham K, et al. An enzyme-coupled assay enables rapid protein engineering for geraniol production in yeast[J]. Biochemical Engineering Journal, 2018, 139: 95-100. |
49 | Wang B L, Ghaderi A, Zhou H, et al. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption[J]. Nature Biotechnology, 2014, 32(5): 473-478. |
50 | Hanko E K R, Paiva A C, Jonczyk M, et al. A genome-wide approach for identification and characterisation of metabolite-inducible systems[J]. Nature Communications, 2020, 11: 1213. |
51 | Mahr R, Frunzke J. Transcription factor-based biosensors in biotechnology: current state and future prospects[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 79-90. |
52 | Zhu Y J, Bao Y. Genome-wide mining of MYB transcription factors in the anthocyanin biosynthesis pathway of gossypium hirsutum[J]. Biochemical Genetics, 2021, 59(3): 678-696. |
53 | Merulla D, van der Meer J R. Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites[J]. ACS Synthetic Biology, 2016, 5(1): 36-45. |
54 | Siedler S, Schendzielorz G, Binder S, et al. SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli[J]. ACS Synthetic Biology, 2014, 3(1): 41-47. |
55 | Serganov A, Nudler E. A decade of riboswitches[J]. Cell, 2013, 152(1/2): 17-24. |
56 | Rogers J K, Taylor N D, Church G M. Biosensor-based engineering of biosynthetic pathways[J]. Current Opinion in Biotechnology, 2016, 42: 84-91. |
57 | Zhang J, Jensen M K, Keasling J D. Development of biosensors and their application in metabolic engineering[J]. Current Opinion in Chemical Biology, 2015, 28: 1-8. |
58 | Miyano K, Sudo Y, Yokoyama A, et al. History of the G protein-coupled receptor (GPCR) assays from traditional to a state-of-the-art biosensor assay[J]. Journal of Pharmacological Sciences, 2014, 126(4): 302-309. |
59 | Ravikumar S, Baylon M G, Park S J, et al. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery[J]. Microbial Cell Factories, 2017, 16(1): 62. |
60 | Ohlendorf R, Vidavski R R, Eldar A, et al. From dusk till dawn: one-plasmid systems for light-regulated gene expression[J]. Journal of Molecular Biology, 2012, 416(4): 534-542. |
61 | Peroza E A, Ewald J C, Parakkal G, et al. A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics[J]. Analytical Biochemistry, 2015, 474: 1-7. |
62 | Mohsin M, Ahmad A. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells [J]. Biosensors and Bioelectronics, 2014, 59: 358-364. |
63 | San Martín A, Ceballo S, Baeza-Lehnert F, et al. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate[J]. PLoS One, 2014, 9(1): e85780. |
64 | San Martín A, Ceballo S, Ruminot I, et al. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells[J]. PLoS One, 2013, 8(2): e57712. |
65 | Hessels A M, Chabosseau P, Bakker M H, et al. eZinCh-2: a versatile, genetically encoded FRET sensor for cytosolic and intraorganelle Zn2+ imaging[J]. ACS Chemical Biology, 2015, 10(9): 2126-2134. |
66 | Oku M, Hoseki J, Ichiki Y, et al. A fluorescence resonance energy transfer (FRET)-based redox sensor reveals physiological role of thioredoxin in the yeast Saccharomyces cerevisiae[J]. FEBS Letters, 2013, 587(6): 793-798. |
67 | Mohsin M, Ahmad A, Iqbal M. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites[J]. Biotechnology Letters, 2015, 37(10): 1919-1928. |
68 | Dong H N, Zu X, Zheng P, et al. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains[J]. Microbial Biotechnology, 2015, 8(2): 230-238. |
69 | Zhang J, Barajas J F, Burdu M, et al. Development of a transcription factor-based lactam biosensor[J]. ACS Synthetic Biology, 2017, 6(3): 439-445. |
70 | Teo W S, Chang M W. Bacterial XylRs and synthetic promoters function as genetically encoded xylose biosensors in Saccharomyces cerevisiae[J]. Biotechnology Journal, 2015, 10(2): 315-322. |
71 | Seok J Y, Han Y H, Yang J S, et al. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite[J]. Cell Reports, 2021, 36(8): 109589. |
72 | Yang P, Wang J, Pang Q X, et al. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor[J]. Metabolic Engineering, 2017, 43: 21-28. |
73 | Klauser B, Rehm C, Summerer D, et al. Engineering of ribozyme-based aminoglycoside switches of gene expression by in vivo genetic selection in Saccharomyces cerevisiae[J]. Methods in Enzymology, 2015, 550: 301-320. |
74 | Liu Y, Yuan H, Ding D, et al. Establishment of a biosensor-based high-throughput screening platform for tryptophan overproduction[J]. ACS Synthetic Biology, 2021, 10(6):1373-1383. |
75 | Lee S W, Oh M K. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28: 143-150. |
76 | Lo T M, Chng S H, Teo W S, et al. A two-layer gene circuit for decoupling cell growth from metabolite production[J]. Cell Systems, 2016, 3(2): 133-143. |
77 | Yang X Y, Liu J H, Zhang J, et al. Quorum sensing-mediated protein degradation for dynamic metabolic pathway control in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2021, 64: 85-94. |
78 | Wu S B, Xue Y T, Yang S J, et al. Combinational quorum sensing devices for dynamic control in cross-feeding cocultivation[J]. Metabolic Engineering, 2021, 67: 186-197. |
79 | Rugbjerg P, Sarup-Lytzen K, Nagy M, et al. Synthetic addiction extends the productive life time of engineered Escherichia coli populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2347-2352. |
80 | Zhou S H, Yuan S F, Nair P H, et al. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli[J]. Metabolic Engineering, 2021, 67: 41-52. |
81 | Flachbart L K, Sokolowsky S, Marienhagen J. Displaced by deceivers: prevention of biosensor cross-talk is pivotal for successful biosensor-based high-throughput screening campaigns[J]. ACS Synthetic Biology, 2019, 8(8): 1847-1857. |
82 | Xu P, Li L, Zhang F, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31): 11299-11304. |
83 | Williams T C, Pretorius I S, Paulsen I T. Synthetic evolution of metabolic productivity using biosensors[J]. Trends in Biotechnology, 2016, 34(5): 371-381. |
84 | Ko Y S, Kim J W, Lee J A, et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production[J]. Chemical Society Reviews, 2020, 49(14): 4615-4636. |
85 | Kaczmarek J A, Prather K L J. Effective use of biosensors for high-throughput library screening for metabolite production[J]. Journal of Industrial Microbiology and Biotechnology, 2021, 8(4):kuab049. |
86 | Shen X L, Wang J, Li C Y, et al. Dynamic gene expression engineering as a tool in pathway engineering[J]. Current Opinion in Biotechnology, 2019, 59: 122-129. |
87 | Lv Y, Gu Y, Xu J L, et al. Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield[J]. Metabolic Engineering, 2020, 61: 79-88. |
88 | Wang J, Shen X L, Jain R, et al. Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli[J]. Metabolic Engineering, 2017, 41: 39-45. |
89 | Soma Y, Hanai T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production [J]. Metabolic Engineering, 2015, 30: 7-15. |
90 | Lan E I, Liao J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018-6023. |
91 | Mannan A A, Liu D, Zhang F Z, et al. Fundamental design principles for transcription-factor-based metabolite biosensors[J]. ACS Synthetic Biology, 2017, 6(10): 1851-1859. |
92 | Liu Y, Li Q, Zheng P, et al. Developing a high-throughput screening method for threonine overproduction based on an artificial promoter[J]. Microbial Cell Factories, 2015, 14: 121. |
93 | Hicks M, Bachmann T T, Wang B J. Synthetic biology enables programmable cell-based biosensors[J]. ChemPhysChem, 2020, 21(2): 132-144. |
94 | Ding N N, Yuan Z Q, Zhang X J, et al. Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor[J]. Nucleic Acids Research, 2020, 48(18): 10602-10613. |
95 | Miao Z, Adamiak R W, Antczak M, et al. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme[J]. RNA, 2017, 23(5): 655-672. |
96 | Gong S, Wang Y L, Wang Z, et al. Computational methods for modeling aptamers and designing riboswitches[J]. International Journal of Molecular Sciences, 2017, 18(11): 2442. |
97 | McKeague M, Wong R S, Smolke C D. Opportunities in the design and application of RNA for gene expression control[J]. Nucleic Acids Research, 2016, 44(7): 2987-2999. |
98 | Boyken S E, Benhaim M A, Busch F, et al. De novo design of tunable, pH-driven conformational changes[J]. Science, 2019, 364(6441): 658-664. |
99 | Quijano-Rubio A, Yeh H W, Park J, et al. De novo design of modular and tunable protein biosensors[J]. Nature, 2021, 591(7850): 482-487. |
100 | Xu P, Wang W Y, Li L Y, et al. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli[J]. ACS Chemical Biology, 2014, 9(2): 451-458. |
101 | Fehér T, Libis V, Carbonell P, et al. A sense of balance: experimental investigation and modeling of a malonyl-CoA sensor in Escherichia coli[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 46. |
102 | Li S J, Si T, Wang M, et al. Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening[J]. ACS Synthetic Biology, 2015, 4(12): 1308-1315. |
[1] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[2] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[3] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[4] | 王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323. |
[5] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[6] | 王欣, 赵鹏, 李清扬, 田平芳. 半导体合成生物学的研究进展[J]. 化工学报, 2021, 72(5): 2426-2435. |
[7] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[8] | 郑煜堃, 孙青, 陈振, 于慧敏. 微生物细胞工厂生产化学品的研究进展——以几种典型小分子和大分子化学品为例[J]. 化工学报, 2021, 72(12): 6109-6121. |
[9] | 张震, 曾雪城, 秦磊, 李春. 微生物细胞工厂的智能设计进展[J]. 化工学报, 2021, 72(12): 6093-6108. |
[10] | 王凯峰, 王金鹏, 韦萍, 纪晓俊. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365. |
[11] | 赵贞尧, 张保财, 李锋, 宋浩. 产电细胞的合成生物学设计构建[J]. 化工学报, 2021, 72(1): 468-482. |
[12] | 王炼, 吴迪, 周景文. 木脂素的生物合成及其微生物法生产的研究进展[J]. 化工学报, 2021, 72(1): 320-333. |
[13] | 秦磊, 俞杰, 宁小钰, 孙文涛, 李春. 合成生物系统构建与绿色生物“智”造[J]. 化工学报, 2020, 71(9): 3979-3994. |
[14] | 高虎涛, 申晓林, 孙新晓, 王佳, 袁其朋. 代谢工程调控策略在生物合成氨基酸及其衍生物中的应用[J]. 化工学报, 2020, 71(9): 4058-4070. |
[15] | 徐静, 由紫暄, 张君奇, 陈正, 吴德光, 李锋, 宋浩. 合成生物学方法改造电活性生物膜研究进展[J]. 化工学报, 2020, 71(9): 3950-3962. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||