化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6109-6121.DOI: 10.11949/0438-1157.20211285
收稿日期:
2021-09-06
修回日期:
2021-11-08
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
陈振,于慧敏
作者简介:
郑煜堃(1996—),男,博士研究生,基金资助:
Yukun ZHENG(),Qing SUN(),Zhen CHEN(),Huimin YU()
Received:
2021-09-06
Revised:
2021-11-08
Online:
2021-12-05
Published:
2021-12-22
Contact:
Zhen CHEN,Huimin YU
摘要:
微生物细胞工厂的创制和优化改造是绿色生物制造的重要内容。基于构建高效微生物细胞工厂的主要使能技术及其新发展,以几种典型小分子和大分子化学品为例,综述了微生物细胞工厂生产化学品的研究进展。讨论了启动子工程、代谢流分析等经典的使能技术和CRISPR基因编辑、诱变耦合高通量筛选、基于人工智能的生物信息学等新技术对于微生物细胞工厂构筑的重要作用。分别以有机醇、有机酸、有机胺小分子和多糖、聚酯类生物大分子的微生物合成为例,分析了如何面向不同特点的产物分子,设计实施不同的基因改造策略,并概述了近年来代表性菌株的生产性能。进一步展望了未来微生物细胞工厂生产化学品的总体发展趋势和应用前景。
中图分类号:
郑煜堃, 孙青, 陈振, 于慧敏. 微生物细胞工厂生产化学品的研究进展——以几种典型小分子和大分子化学品为例[J]. 化工学报, 2021, 72(12): 6109-6121.
Yukun ZHENG, Qing SUN, Zhen CHEN, Huimin YU. Progress for chemicals production via microbial cell factory: selecting several small molecules and macromolecular products as examples[J]. CIESC Journal, 2021, 72(12): 6109-6121.
1 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现"碳中和"[J]. 化工进展, 2021, 40(3): 1137-1141. |
Tan T W, Chen B Q, Zhang H L, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. | |
2 | Wang M M, Yu H M, Li X, et al. Single-gene regulated non-spore-forming Bacillus subtilis: construction, transcriptome responses, and applications for producing enzymes and surfactin[J]. Metabolic Engineering, 2020, 62: 235-248. |
3 | Liang Y X, Yu H M. Genetic toolkits for engineering Rhodococcus species with versatile applications[J]. Biotechnology Advances, 2021, 49: 107748. |
4 | Zhang X, Zhang X F, Li H P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechnology, 2014, 98(12): 5387-5396. |
5 | Chao R, Yuan Y, Zhao H. Recent advances in DNA assembly technologies[J]. FEMS Yeast Research, 2015, 15(1): 1-9. |
6 | Cheng F Y, Yu H M, Stephanopoulos G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid[J]. Metabolic Engineering, 2019, 55: 276-289. |
7 | Arroyo-Olarte R D, Bravo Rodríguez R, Morales-Ríos E. Genome editing in bacteria: CRISPR-cas and beyond[J]. Microorganisms, 2021, 9(4): 844. |
8 | Liu Z, Dong H, Cui Y, et al. Application of different types of CRISPR/Cas-based systems in bacteria[J]. Microbial Cell Factories, 2020, 19(1): 172. |
9 | Qin Q, Ling C, Zhao Y Q, et al. CRISPR/Cas9 editing genome of extremophile Halomonas spp.[J]. Metabolic Engineering, 2018, 47: 219-229. |
10 | Hashemi A. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli[J]. World Journal of Microbiology and Biotechnology, 2020, 36(7): 1-13. |
11 | Chen Y, Chen X Y, Du H T, et al. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV)[J]. Metabolic Engineering, 2019, 54: 69-82. |
12 | Abudayyeh O O, Gootenberg J S, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573. |
13 | Mavrommati M, Daskalaki A, Papanikolaou S, et al. Adaptive laboratory evolution principles and applications in industrial biotechnology[J]. Biotechnology Advances, 2021: 107795. |
14 | Bjork S M, Joensson H N. Microfluidics for cell factory and bioprocess development[J]. Current Opinion in Biotechnology, 2019, 55: 95-102. |
15 | 芮金红. 结冷胶生产菌株代谢工程改造[D]. 呼和浩特: 内蒙古大学, 2019. |
Rui J H. Metabolic engineering modification of gellan gum production strain and its gel production performance[D]. Hohhot: Inner Mongolia University, 2019. | |
16 | Chen F Y, Jung H W, Tsuei C Y, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946. |
17 | Ruppin E, Papin J A, de Figueiredo L F, et al. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks[J]. Current Opinion in Biotechnology, 2010, 21(4): 502-510. |
18 | Cheng F Y, Luozhong S J, Guo Z G, et al. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation[J]. Biotechnology Journal, 2017, 12(10): 1700191. |
19 | Xu J Z, Zhang J L, Zhang W G. Antisense RNA: the new favorite in genetic research[J]. Journal of Zhejiang University-SCIENCE B, 2018, 19(10): 739-749. |
20 | Negrete A, Ng W I, Shiloach J. Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K-12 (JM109 and MG1655) and E. coli B (BL21)[J]. Microbial Cell Factories, 2010, 9(1): 1-9. |
21 | Gilbert L A, Horlbeck M A, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation[J]. Cell, 2014, 159(3): 647-661. |
22 | Noh M, Yoo S M, Kim W J, et al. Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli[J]. Cell Systems, 2017, 5(4): 418-426. |
23 | Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
24 | Wang Y, Wang H C, Wei L, et al. Synthetic promoter design in Escherichia coli based on a deep generative network[J]. Nucleic Acids Research, 2020, 48(12): 6403-6412. |
25 | Nakamura C E, Whited G M. Metabolic engineering for the microbial production of 1, 3-propanediol[J]. Current Opinion in Biotechnology, 2003, 14(5): 454-459. |
26 | Xu Y Z, Wu R C, Zheng Z M, et al. Influence of dhaT mutation of K. pneumoniae on 1, 3-propanediol fermentation[J]. World Journal of Microbiology and Biotechnology, 2011, 27(6): 1491-1497. |
27 | Burgard A, Burk M J, Osterhout R, et al. Development of a commercial scale process for production of 1, 4-butanediol from sugar[J]. Current Opinion in Biotechnology, 2016, 42: 118-125. |
28 | Liu Y, Cen X C, Liu D H, et al. Metabolic engineering of Escherichia coli for high-yield production of (R)-1, 3-butanediol[J]. ACS Synthetic Biology, 2021, 10(8): 1946-1955. |
29 | Li C, Gao S, Yang X F, et al. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolyticavia agricultural residue based in situ fibrous bed bioreactor[J]. Bioresource Technology, 2018, 249: 612-619. |
30 | Wang D, Li Q, Song Z Y, et al. High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 512-518. |
31 | Okino S, Noburyu R, Suda M, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology, 2008, 81(3): 459-464. |
32 | Fu Y Q, Li S, Chen Y, et al. Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy[J]. Applied Biochemistry and Biotechnology, 2010, 162(4): 1031-1038. |
33 | Li N, Zhang B, Wang Z W, et al. Engineering Escherichia coli for fumaric acid production from glycerol[J]. Bioresource Technology, 2014, 174: 81-87. |
34 | Zambanini T, Sarikaya E, Kleineberg W, et al. Efficient malic acid production from glycerol with Ustilago trichophora TZ1[J]. Biotechnology for Biofuels, 2016, 9(1): 1-8. |
35 | Jantama K, Haupt M J, Svoronos S A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153. |
36 | Chae T U, Kim W J, Choi S, et al. Metabolic engineering of Escherichia coli for the production of 1, 3-diaminopropane, a three carbon diamine[J]. Scientific Reports, 2015, 5: 13040. |
37 | Li Z, Shen Y P, Jiang X L, et al. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(2): 123-139. |
38 | Kim H T, Baritugo K A, Hyun S M, et al. Development of metabolically engineered Corynebacterium glutamicum for enhanced production of cadaverine and its use for the synthesis of bio-polyamide 510[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 129-138. |
39 | Zhang Y, Liu D H, Chen Z. Production of C2—C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies[J]. Biotechnology for Biofuels, 2017, 10(1): 1-20. |
40 | Zhong W, Zhang Y, Wu W, et al. Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1, 3-propanediol from glucose[J]. ACS Synthetic Biology, 2019, 8(3): 587-595. |
41 | Li Z H, Wu Z Y, Cen X C, et al. Efficient production of 1, 3-propanediol from diverse carbohydrates via a non-natural pathway using 3-hydroxypropionic acid as an intermediate[J]. ACS Synthetic Biology, 2021, 10(3): 478-486. |
42 | Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol[J]. Nature Chemical Biology, 2011, 7(7): 445-452. |
43 |
Kim T, Flick R, Brunzelle J, et al. Novel aldo-keto reductases for the biocatalytic conversion of 3-hydroxybutanal to 1, 3-butanediol: structural and biochemical studies[J]. Applied and Environmental Microbiology, 2017, 83(7). DOI:10.1228/aem.03172-16.
DOI |
44 | Thuy N T H, Kongkaew A, Flood A, et al. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate[J]. Bioresource Technology, 2017, 233: 342-352. |
45 |
Xiao M Y, Zhu X N, Fan F Y, et al. Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur-containing amino acids[J]. Applied and Environmental Microbiology, 2017, 83(7). DOI:10.1128/aem.03050-16.
DOI |
46 | Wendisch V F, Mindt M, Pérez-García F. Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3583-3594. |
47 | Kind S, Kreye S, Wittmann C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1, 5-diaminopentane in Corynebacterium glutamicum[J]. Metabolic Engineering, 2011, 13(5): 617-627. |
48 | Kind S, Jeong W K, Schröder H, et al. Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum[J]. Appl Environ Microbiol, 2010, 76(15): 5175-5180. |
49 | Kumar A S, Mody K, Jha B. Bacterial exopolysaccharides: a perception[J]. Journal of Basic Microbiology, 2007, 47(2): 103-117. |
50 | Allison D G, Sutherland I W. The role of exopolysaccharides in adhesion of freshwater bacteria[J]. Microbiology, 1987, 133(5): 1319-1327. |
51 | Solakyildirim K. Recent advances in glycosaminoglycan analysis by various mass spectrometry techniques[J]. Analytical and Bioanalytical Chemistry, 2019, 411(17): 3731-3741. |
52 | Tan D, Wang Y, Tong Y, et al. Grand challenges for industrializing polyhydroxyalkanoates (PHAs)[J]. Trends in Biotechnology, 2021, 39(9): 953-963. |
53 | Ganesh Saratale R, Cho S K, Dattatraya Saratale G, et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams[J]. Bioresource Technology, 2021, 325: 124685. |
54 | Zheng Y, Chen J C, Ma Y M, et al. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction[J]. Metabolic Engineering, 2020, 58: 82-93. |
55 | Becker A, Katzen F, Pühler A, et al. Xanthan gum biosynthesis and application: a biochemical /genetic perspective[J]. Applied Microbiology and Biotechnology, 1998, 50(2): 145-152. |
56 | Jansson P E, Lindberg B, Sandford P A. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea[J]. Carbohydrate Research, 1983, 124(1): 135-139. |
57 | Robyt J F, Kimble B K, Walseth T F. The mechanism of dextransucrase action: direction of dextran biosynthesis[J]. Archives of Biochemistry and Biophysics, 1974, 165(2): 634-640. |
58 | Ye J W, Huang W Z, Wang D S, et al. Pilot scale-up of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Halomonas bluephagenesis via cell growth adapted optimization process[J]. Biotechnology Journal, 2018, 13(5): 1800074. |
59 | Im J H, Song J M, Kang J H, et al. Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(11): 1337-1344. |
60 | Takase K, Taguchi S, Doi Y. Enhanced synthesis of poly(3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, and in vitro recombination of the type Ⅱ polyhydroxyalkanoate synthase gene[J]. The Journal of Biochemistry, 2003, 133(1): 139-145. |
61 | Normi Y M, Hiraishi T, Taguchi S, et al. Site-directed saturation mutagenesis at residue F420 and recombination with another beneficial mutation of Ralstonia eutropha polyhydroxyalkanoate synthase[J]. Biotechnology Letters, 2005, 27(10): 705-712. |
62 | Sheu D S, Lee C Y. Altering the substrate specificity of polyhydroxyalkanoate synthase 1 derived from Pseudomonas putida GPo1 by localized semirandom mutagenesis[J]. J. Bacteriol., 2004, 186(13): 4177-4184. |
63 | 张俊. 嗜盐少动鞘氨醇单胞菌发酵产结冷胶的研究及其应用初探[D]. 杭州: 浙江大学, 2015. |
Zhang J. Study on fermentation biotechnology of gellan gum production by halobacterium S. paucimobilis OHZJUJW and its application[D]. Hangzhou: Zhejiang University, 2015. | |
64 | Wu X C, Chen Y M, Li Y D, et al. Constitutive expression of Vitreoscilla haemoglobin in Sphingomonas elodea to improve gellan gum production[J]. Journal of Applied Microbiology, 2011, 110(2): 422-430. |
65 | Zhu G L, Guo N, Yong Y N, et al. Effect of 2-deoxy-d-glucose on gellan gum biosynthesis by Sphingomonas paucimobilis[J]. Bioprocess and Biosystems Engineering, 2019, 42(5): 897-900. |
66 | Wang Y, Hu L T, Huang H, et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum[J]. Nature Communications, 2020, 11: 3120. |
67 | Zheng Y, Cheng F, Zheng B, et al. Enhancing single-cell hyaluronic acid biosynthesis by microbial morphology engineering[J]. Synthetic and Systems Biotechnology, 2020, 5(4): 316-323. |
68 | Wang F, Lee S Y. Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli[J]. Applied and Environmental Microbiology, 1997, 63(12): 4765-4769. |
69 | Yu H M, Yin J, Li H Q, et al. Construction and selection of the novel recombinant Escherichia coli strain for poly(β-hydroxybutyrate) production[J]. Journal of Bioscience and Bioengineering, 2000, 89(4): 307-311. |
70 | 于慧敏, 张延平, 史悦, 等. 重组大肠杆菌VG1(pTU14)产PHB的补料分批培养[J]. 化工学报, 2002, 53(7): 742-746. |
Yu H M, Zhang Y P, Shi Y, et al. Production of poly-β-hydroxybutyrate by fed-batch culture of novel recombinant Escherichia coli VG1(pTU14)[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(7): 742-746. | |
71 | Amanullah A, Serrano-Carreon L, Castro B, et al. The influence of impeller type in pilot scale xanthan fermentations[J]. Biotechnology and Bioengineering, 1998, 57(1): 95-108. |
72 | Velu S, Velayutham V, Manickkam S. Optimization of fermentation media for xanthan gum production from Xanthomonas campestris using response surface methodology and artificial neural network techniques[J]. Indian Journal of Chemical Technology, 2016, 23(5): 353-361. |
73 | Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, et al. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses[J]. Process Biochemistry, 2003, 39(2): 249-256. |
74 | Yang S T, Lo Y M, Min D B. Xanthan gum fermentation by Xanthomonas campestris immobilized in a novel centrifugal fibrous-bed bioreactor[J]. Biotechnology Progress, 1996, 12(5): 630-637. |
75 | Stepanov N A, Senko O V, Efremenko E N. Biocatalytic production of extracellular exopolysaccharide dextran synthesized by cells of Leuconostoc mesenteroides[J]. Catalysis in Industry, 2017, 9(4): 339-343. |
76 | Jin P, Kang Z, Yuan P H, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168[J]. Metabolic Engineering, 2016, 35: 21-30. |
77 | Li Y Y, Shi Z Z, Shao Y Z, et al. Temperature-controlled molecular weight of hyaluronic acid produced by engineered Bacillus subtilis[J]. Biotechnology Letters, 2021, 43(1): 271-277. |
78 | Amanullah A, Serrano L C, Galindo E, et al. Reproducibility of pilot scale xanthan fermentations[J]. Biotechnology Progress, 1996, 12(4): 466-473. |
79 | Amanullah A, Tuttiett B, Nienow A W. Agitator speed and dissolved oxygen effects in xanthan fermentations[J]. Biotechnology and Bioengineering, 1998, 57(2): 198-210. |
80 | Padmanabhan P A, Kim D S. Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523[J]. Carbohydrate Research, 2002, 337(17): 1529-1533. |
81 | Amanullah A, Satti S, Nienow A W. Enhancing xanthan fermentations by different modes of glucose feeding[J]. Biotechnology Progress, 1998, 14(2): 265-269. |
82 | Zhu G L, Sheng L, Tong Q Y. A new strategy to enhance gellan production by two-stage culture in Sphingomonas paucimobilis[J]. Carbohydrate Polymers, 2013, 98(1): 829-834. |
83 | Ryu H W, Hahn S K, Chang Y K, et al. Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phospate limitation[J]. Biotechnology and Bioengineering, 1997, 55(1): 28-32. |
84 | Lee S H, Oh D H, Ahn W S, et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila[J]. Biotechnology and Bioengineering, 2000, 67(2): 240-244. |
85 | Lee S Y, Wong H H, Choi J I, et al. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation[J]. Biotechnology and Bioengineering, 2000, 68(4): 466-470. |
86 | Jiang X R, Chen G Q. Morphology engineering of bacteria for bio-production[J]. Biotechnology Advances, 2016, 34(4): 435-440. |
87 | Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74. |
88 | Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
89 | Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24(6): 770-773. |
90 | 卢明, 陈代杰. 氨基糖苷类抗生素的拓展应用研究进展[J]. 中国抗生素杂志, 2019, 44(11): 1288-1294. |
Lu M, Chen D J. Advances in the extended use of aminoglycoside antibiotics[J]. Chinese Journal of Antibiotics, 2019, 44(11): 1288-1294. | |
91 | 王苗苗, 于慧敏, 何欣, 等. 高产表面活性素的重组枯草芽孢杆菌构建及培养优化[J]. 生物工程学报, 2020, 36(11): 2377-2386. |
Wang M M, Yu H M, He X, et al. Construction and optimization of engineered Bacillus subtilis for surfactin production[J]. Chinese Journal of Biotechnology, 2020, 36(11): 2377-2386. | |
92 |
Miller B W, Lim A L, Lin Z J, et al. Shipworm symbiosis ecology-guided discovery of an antibiotic that kills colistin-resistant Acinetobacter[J]. Cell Chemical Biology, 2021. DOI: 10.1016/j.chembiol.2021.05.003.
DOI |
93 | Cai T, Sun H B, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
94 | de Sousa Costa L A, Inomata Campos M, Izabel Druzian J, et al. Biosynthesis of xanthan gum from fermenting shrimp shell: yield and apparent viscosity[J]. International Journal of Polymer Science, 2014, 2014: 1-8. |
95 | Gunasekar V, Reshma K R, Treesa G, et al. Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation[J]. Carbohydrate Polymers, 2014, 102: 669-673. |
96 | Li P Y, Li T, Zeng Y, et al. Biosynthesis of xanthan gum by Xanthomonas campestris LRELP-1 using kitchen waste as the sole substrate[J]. Carbohydrate Polymers, 2016, 151: 684-691. |
97 | Mohsin A, Zhang K P, Hu J L, et al. Optimized biosynthesis of xanthan via effective valorization of orange peels using response surface methodology: a kinetic model approach[J]. Carbohydrate Polymers, 2018, 181: 793-800. |
98 | Camacho-Zaragoza J M, Hernández-Chávez G, Moreno-Avitia F, et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol[J]. Microbial Cell Factories, 2016, 15(1): 1-11. |
99 | Jones J A, Vernacchio V R, Sinkoe A L, et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids[J]. Metabolic Engineering, 2016, 35: 55-63. |
100 | Shahab R L, Brethauer S, Davey M P, et al. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose[J]. Science, 2020, 369(6507): eabb1214. |
101 | Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. |
102 | Tiso T, Narancic T, Wei R, et al. Towards bio-upcycling of polyethylene terephthalate[J]. Metabolic Engineering, 2021, 66: 167-178. |
[1] | 赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122. |
[2] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[3] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[4] | 张震, 曾雪城, 秦磊, 李春. 微生物细胞工厂的智能设计进展[J]. 化工学报, 2021, 72(12): 6093-6108. |
[5] | 王凯峰, 王金鹏, 韦萍, 纪晓俊. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365. |
[6] | 张耀, 邱晓曼, 陈程鹏, 于卓然, 洪厚胜. 生物法制造丁二酸研究进展[J]. 化工学报, 2020, 71(5): 1964-1975. |
[7] | 徐彦芹, 杨锡智, 罗若诗, 黄玉红, 霍锋, 王丹. 合成生物学在生物基塑料制造中的应用[J]. 化工学报, 2020, 71(10): 4520-4531. |
[8] | 周梦迪, 沈嘉炜, 梁立军, 李嘉辰, 金乐红, 王琦. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165. |
[9] | 薛海洁, 王颖, 李春. 植物天然产物的微生物合成与转化[J]. 化工学报, 2019, 70(10): 3825-3835. |
[10] | 张淑芬. 中国染料工业现状与发展趋势[J]. 化工学报, 2019, 70(10): 3704-3711. |
[11] | 陈天华, 张若思, 姜国珍, 姚明东, 刘宏, 王颖, 肖文海, 元英进. 产蒎烯人工酵母细胞的构建[J]. 化工学报, 2019, 70(1): 179-188. |
[12] | 武耀康, 刘延峰, 李江华, 堵国成, 刘龙, 陈坚. 动态调控元件及其在微生物代谢工程中的应用[J]. 化工学报, 2018, 69(1): 272-281. |
[13] | 苏运祥, 全学波, 闵文凤, 乔来聪, 李理波, 周健. PAMAM树状大分子负载和释放阿霉素的耗散粒子动力学模拟[J]. 化工学报, 2017, 68(5): 1757-1766. |
[14] | 张娜, 王斯晗, 王嘉明, 李翠勤, 王俊. 超支化大分子桥联水杨醛亚胺钴催化剂催化乙烯低聚[J]. 化工学报, 2017, 68(3): 903-909. |
[15] | 赵雨佳, 张根林, 周晓宏, 李春. 核糖核酸开关用于微生物细胞工厂的智能与精细调控[J]. 化工学报, 2015, 66(10): 3811-2819. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||