化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3825-3835.DOI: 10.11949/0438-1157.20190618
收稿日期:
2019-06-04
修回日期:
2019-07-13
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
李春
作者简介:
薛海洁(1990—),女,博士研究生,基金资助:
Haijie XUE(),Ying WANG,Chun LI()
Received:
2019-06-04
Revised:
2019-07-13
Online:
2019-10-05
Published:
2019-10-05
Contact:
Chun LI
摘要:
植物天然产物是一类结构复杂、性能多样的次级代谢产物,广泛应用于食品、药品、化妆品等多个领域。目前植物天然产物的主要来源依赖于从植物中提取,这种生产方式周期长且占用大量耕地。微生物细胞因其生长周期短、操作简便、环境友好、大规模发酵可控等优势而被广泛研究用以替代传统的植物提取法。目前利用微生物细胞工厂合成和转化植物天然产物已成为研究的热点,实现了萜类、黄酮、生物碱、皂苷等多种植物天然产物的合成和转化。本文分别从从头合成和生物转化的角度综述了微生物细胞工厂在植物天然产物合成中的应用,为更加系统、深入地研究植物天然产物的微生物合成与转化提供参考。
中图分类号:
薛海洁, 王颖, 李春. 植物天然产物的微生物合成与转化[J]. 化工学报, 2019, 70(10): 3825-3835.
Haijie XUE, Ying WANG, Chun LI. Microbial synthesis and transformation of plant-derived natural products[J]. CIESC Journal, 2019, 70(10): 3825-3835.
萜类 | 调控优化策略 | 底盘细胞 | 产量 | |
---|---|---|---|---|
单萜 | 芳樟醇 | 过表达tHMG1,结合下调ERG9,成功合成芳樟醇 | 酿酒酵母 | 95 μg/L[ |
柠檬烯 | 过表达异源MVA途径并蛋白质组分析 | 大肠杆菌 | 605 mg/L[ | |
桧烯 | 过表达异源合成途径,优化发酵条件 | 大肠杆菌 | 2.65 g/L[ | |
香叶醇 | 异源表达来源于罗勒的香叶醇合酶,敲除yjgB基因,并整合异源MVA途径 | 大肠杆菌 | 182.5 mg/L[ | |
月桂烯 | 过表达异源MVA途径和GPPS,优化发酵条件 | 大肠杆菌 | 58.19 mg/L[ | |
蒎烯 | 筛选最优组合酶,融合表达,抑制分支途径 | 大肠杆菌 | 32.4 mg/L[ | |
倍半萜 | 异雪松醇 | 异源表达合成酶,过表达tHMG1与upc2-1 | 酿酒酵母 | 0.37 mg/L[ |
青蒿酸 | 改造MVA途径,引入外源合成途径,青蒿酸产量为32 mg/L;整体优化上下游模块,筛选新酶,优化发酵条件,减少分支途径 | 酿酒酵母 | 25 g/L[ | |
α-檀香烯 | MVA途径优化,增加前体和辅因子供应,增加转录因子的活力;葡萄糖诱导ERG9表达,降低分支途径,过表达tHMGR,敲除LPP1 | 酿酒酵母 | 92 mg/L[ | |
椒二醇 | 宿主遗传改造,降低FPP分支途径,过表达合成途径 | 酿酒酵母 | 50 mg/L[ | |
圆柚酮 | 异源表达合成途径 | 酿酒酵母 | Ref.[ | |
紫穗槐-4,11-二烯 | 密码子优化、模块替换、启动子优化、支架设计改造,两相培养,过表达HMGS与HMGR | 大肠杆菌 | 27.4 g/L[ | |
二萜 | 次丹参酮二烯 | 融合表达SmCPS,SmKSL,BST1,FPPS,过表达tHMG1,upc2-1,添加新的GGPP合酶,分批补料 | 酿酒酵母 | 488 mg/L[ |
铁锈醇 | 在次丹参酮二烯合成基础上,引入CYP76AH1 | 酿酒酵母 | 10.5 mg/L[ | |
泪杉醇 | 利用CYP450氧化酶催化多样性,结合基因挖掘、组合表达、蛋白质结构模拟与改造 | 酿酒酵母 | 96 mg/L[ | |
鼠尾草酸 | 解析合成途径,酶分子模拟改造 | 酿酒酵母 | 2.74 mg/L[ | |
紫杉二烯 | 异源表达合成途径,功能模块精确调控,降低产物毒性 | 大肠杆菌 | 1 g/L[ | |
5α羟化紫杉二烯醇 | 模块化优化,酶工程设计改造关键酶 | 大肠杆菌 | 58 mg/L[ | |
氧化紫杉烷 | 平衡CYP450模块表达,酶N端修饰,组学分析,反应器放大 | 大肠杆菌 | 570 mg/L[ | |
左旋海松二烯 | 途径改造与酶定向进化 | 大肠杆菌 | 700 mg/L[ | |
香紫苏醇 | 异源表达合成途径与功能基因筛选 | 大肠杆菌 | 1.5 g/L[ | |
三萜 | 原人参二醇 | 异源表达合成路径,MVA途径优化,提高前体供应,调控代谢途径 | 酿酒酵母 | 15.9 mg/L[ |
人参皂苷 | 基因挖掘,构建异源表达途径 | 酿酒酵母 | 2 g/L[ | |
β-香树脂醇 | 优化MVA途径,提高前体供应,产量达到88.6 mg/L;在此基础上,强化基因表达,优化发酵条件 | 酿酒酵母 | 138.8 mg/L[ | |
3-O-葡萄糖集刺囊酸 | 共表达多个关键基因,利用甲基-β-环糊精使产物分泌到胞外 | 酿酒酵母 | Ref.[ | |
达玛烯二醇 | 重构合成途径 | 大肠杆菌 | 8.6 mg/L[ | |
甘草次酸 | 重构合成途径,匹配CYP450酶于P450还原酶CPR | 酿酒酵母 | 18.9 mg/L[ | |
四萜 | β-胡萝卜素 | 引入外源MVA途径,调控基因表达 | 大肠杆菌 | 2.1 g/L[ |
虾青素 | 筛选并引入不同物种的叶黄素合成途径,加强IPP合成 | 大肠杆菌 | 1.4 mg/g[ | |
番茄红素 | 低拷贝质粒与培养条件优化 | 大肠杆菌 | 260 mg/L[ |
表1 利用微生物合成萜类物质及其前体
Table 1 Synthesis of terpenoids and precursors by microorganisms
萜类 | 调控优化策略 | 底盘细胞 | 产量 | |
---|---|---|---|---|
单萜 | 芳樟醇 | 过表达tHMG1,结合下调ERG9,成功合成芳樟醇 | 酿酒酵母 | 95 μg/L[ |
柠檬烯 | 过表达异源MVA途径并蛋白质组分析 | 大肠杆菌 | 605 mg/L[ | |
桧烯 | 过表达异源合成途径,优化发酵条件 | 大肠杆菌 | 2.65 g/L[ | |
香叶醇 | 异源表达来源于罗勒的香叶醇合酶,敲除yjgB基因,并整合异源MVA途径 | 大肠杆菌 | 182.5 mg/L[ | |
月桂烯 | 过表达异源MVA途径和GPPS,优化发酵条件 | 大肠杆菌 | 58.19 mg/L[ | |
蒎烯 | 筛选最优组合酶,融合表达,抑制分支途径 | 大肠杆菌 | 32.4 mg/L[ | |
倍半萜 | 异雪松醇 | 异源表达合成酶,过表达tHMG1与upc2-1 | 酿酒酵母 | 0.37 mg/L[ |
青蒿酸 | 改造MVA途径,引入外源合成途径,青蒿酸产量为32 mg/L;整体优化上下游模块,筛选新酶,优化发酵条件,减少分支途径 | 酿酒酵母 | 25 g/L[ | |
α-檀香烯 | MVA途径优化,增加前体和辅因子供应,增加转录因子的活力;葡萄糖诱导ERG9表达,降低分支途径,过表达tHMGR,敲除LPP1 | 酿酒酵母 | 92 mg/L[ | |
椒二醇 | 宿主遗传改造,降低FPP分支途径,过表达合成途径 | 酿酒酵母 | 50 mg/L[ | |
圆柚酮 | 异源表达合成途径 | 酿酒酵母 | Ref.[ | |
紫穗槐-4,11-二烯 | 密码子优化、模块替换、启动子优化、支架设计改造,两相培养,过表达HMGS与HMGR | 大肠杆菌 | 27.4 g/L[ | |
二萜 | 次丹参酮二烯 | 融合表达SmCPS,SmKSL,BST1,FPPS,过表达tHMG1,upc2-1,添加新的GGPP合酶,分批补料 | 酿酒酵母 | 488 mg/L[ |
铁锈醇 | 在次丹参酮二烯合成基础上,引入CYP76AH1 | 酿酒酵母 | 10.5 mg/L[ | |
泪杉醇 | 利用CYP450氧化酶催化多样性,结合基因挖掘、组合表达、蛋白质结构模拟与改造 | 酿酒酵母 | 96 mg/L[ | |
鼠尾草酸 | 解析合成途径,酶分子模拟改造 | 酿酒酵母 | 2.74 mg/L[ | |
紫杉二烯 | 异源表达合成途径,功能模块精确调控,降低产物毒性 | 大肠杆菌 | 1 g/L[ | |
5α羟化紫杉二烯醇 | 模块化优化,酶工程设计改造关键酶 | 大肠杆菌 | 58 mg/L[ | |
氧化紫杉烷 | 平衡CYP450模块表达,酶N端修饰,组学分析,反应器放大 | 大肠杆菌 | 570 mg/L[ | |
左旋海松二烯 | 途径改造与酶定向进化 | 大肠杆菌 | 700 mg/L[ | |
香紫苏醇 | 异源表达合成途径与功能基因筛选 | 大肠杆菌 | 1.5 g/L[ | |
三萜 | 原人参二醇 | 异源表达合成路径,MVA途径优化,提高前体供应,调控代谢途径 | 酿酒酵母 | 15.9 mg/L[ |
人参皂苷 | 基因挖掘,构建异源表达途径 | 酿酒酵母 | 2 g/L[ | |
β-香树脂醇 | 优化MVA途径,提高前体供应,产量达到88.6 mg/L;在此基础上,强化基因表达,优化发酵条件 | 酿酒酵母 | 138.8 mg/L[ | |
3-O-葡萄糖集刺囊酸 | 共表达多个关键基因,利用甲基-β-环糊精使产物分泌到胞外 | 酿酒酵母 | Ref.[ | |
达玛烯二醇 | 重构合成途径 | 大肠杆菌 | 8.6 mg/L[ | |
甘草次酸 | 重构合成途径,匹配CYP450酶于P450还原酶CPR | 酿酒酵母 | 18.9 mg/L[ | |
四萜 | β-胡萝卜素 | 引入外源MVA途径,调控基因表达 | 大肠杆菌 | 2.1 g/L[ |
虾青素 | 筛选并引入不同物种的叶黄素合成途径,加强IPP合成 | 大肠杆菌 | 1.4 mg/g[ | |
番茄红素 | 低拷贝质粒与培养条件优化 | 大肠杆菌 | 260 mg/L[ |
产物 | 前体物质 | 异源基因及来源 | 底盘细胞 | 产量 |
---|---|---|---|---|
柚皮素 | L-酪氨酸 | R.rubra (PAL), S.coelicolor A3 (ScCCL), G.echinata (CHS) | 大肠杆菌 | Ref.[ |
香豆素 | 苯丙氨酸 | P. trichocarpa, P. deltoides (PAL, C4H, CPR) | 酿酒酵母 | Ref.[ |
柚皮素 | 葡萄糖 | R. capsulatus (TAL), A. thaliana (4CL, CHS) | 大肠杆菌 | 20.8 mg/L[ |
松属素 | 苯丙氨酸 | C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 58 mg/L[ |
芹黄素 5,7-二羟黄酮 | L-酪氨酸 苯丙氨酸 | R. rubra (PAL), S. coelicolor (ScCCL), G. echinata (CHS), P. lobata (CHI), P. crispum(FS1), C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 13 g/L[ 9.4 mg/L[ |
山柰酚 | L-酪氨酸 | R. rubra (PAL), S. coelicolor A3(2) (ScCCL), G. echinata (CHS), P. lobata (CHI) | 大肠杆菌 | 15.1 mg/L[ |
姜黄素 | 苯丙氨酸 | Citrus species (F3H, FLS), C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 1.1 mg/L[ |
白藜芦醇 | 苯丙氨酸 | P. deltoides (PAL, CPR), G. max (C4H, 4CL), V. vinifera (RS) | 酿酒酵母 | 0.29 mg/L[ |
山柰酚 槲皮苷 香豆素酸 柚皮素 | 苯丙氨酸 | P. trichocarpa x P. deltoides (PAL, CPR), G. max (C4H, 4CL, CHS, CHI, F3H), S.tuberosum (FLS) | 酿酒酵母 | 1.3 mg/L[ N 0.26 mg/L 0.38 mg/L |
柚皮素 | 葡萄糖 | A. thaliana (4CL3, CHS1, CHI1, C4H and PAL1, CPR CHS3), R. capsulatus (TAL1) | 酿酒酵母 | 112.9 mg/L[ |
圣草素 | 葡萄糖 L-酪氨酸 | R. glutinis (TAL), P. crispum (4CL), P. X hybrida (CHS), M. sativa (CHI), C. glutamicum (accBC, dtsR1), E. coli BL21(DE3) (acs) | 大肠杆菌 | 107 mg/L[ |
4-香豆酸 咖啡酸 阿魏酸 | 葡萄糖 | S. espanaensis (TAL,C3H), A. thaliana (COM) | 大肠杆菌 | 974 mg/L[ 150 mg/L 196 mg/L |
4-O-葡萄糖基白藜芦醇 | 葡萄糖 | S. espanaensis (TAL), A. hypogaea (STS), S. coelicolor A3(2) (ScCCL) | 大肠杆菌 | 7.5 mg/L[ |
樱花素 | 葡萄糖 | S. espanaensis (TAL), O. sativa (4CL), Populus euramericana (CHS), O. sativa (NOMT), E. coli (ppsA, tktA, aroGfbr, tyrAfbr) | 大肠杆菌 | 40.1 mg/L[ |
白藜芦醇 | 香豆酸 | A. thaliana (4CL1), V. vinifera (STS) E. coli (ACC/BirA) (Cerulenin added) | 大肠杆菌 | 2340 mg/L[ |
儿茶酸 | 圣草素 | C. sinensis (F3H), A. andraeanum (FDR), D. uncinatum (DuLAR) | 大肠杆菌 | 910.9 mg/L[ |
白皮杉醇 | 咖啡酸 | A. thaliana (4CL1), A. hypogaea (STS) | 大肠杆菌 | 13.3 mg/L[ |
7-O-甲基香橙素 | 香豆酸 | P. crispum (Pc4Cl-2), P. hybrid (PhCHS), M. sativa (CHI), A. thaliana (F3H), S. avermitilis (OMT), N. farcinica (AccBC, birA, acs) | 大肠杆菌 | 2.7 mg/L[ |
柚皮素 | 香豆酸 | S. coelicolor (CCL), A. thaliana (CHS) | 委内瑞拉链霉菌 | 4 mg/L[ |
柚皮素 花旗松素 | 葡萄糖 葡萄糖 | R. glutinis (TAL), P. crispum (4CL), P. hybrida (CHS), M. sativa (CHI), G. hybrida (F3′H), C. roseus (CPR), Y. lipolytica (ACS2, ACC1) | 耶氏解脂酵母 | 71.2 mg/L[ 48.1 mg/L |
表2 微生物合成黄酮类化合物及其产量
Table 2 Microbial synthesis of flavonoids and their yield
产物 | 前体物质 | 异源基因及来源 | 底盘细胞 | 产量 |
---|---|---|---|---|
柚皮素 | L-酪氨酸 | R.rubra (PAL), S.coelicolor A3 (ScCCL), G.echinata (CHS) | 大肠杆菌 | Ref.[ |
香豆素 | 苯丙氨酸 | P. trichocarpa, P. deltoides (PAL, C4H, CPR) | 酿酒酵母 | Ref.[ |
柚皮素 | 葡萄糖 | R. capsulatus (TAL), A. thaliana (4CL, CHS) | 大肠杆菌 | 20.8 mg/L[ |
松属素 | 苯丙氨酸 | C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 58 mg/L[ |
芹黄素 5,7-二羟黄酮 | L-酪氨酸 苯丙氨酸 | R. rubra (PAL), S. coelicolor (ScCCL), G. echinata (CHS), P. lobata (CHI), P. crispum(FS1), C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 13 g/L[ 9.4 mg/L[ |
山柰酚 | L-酪氨酸 | R. rubra (PAL), S. coelicolor A3(2) (ScCCL), G. echinata (CHS), P. lobata (CHI) | 大肠杆菌 | 15.1 mg/L[ |
姜黄素 | 苯丙氨酸 | Citrus species (F3H, FLS), C. glutamicum (accBC and dtsR1) | 大肠杆菌 | 1.1 mg/L[ |
白藜芦醇 | 苯丙氨酸 | P. deltoides (PAL, CPR), G. max (C4H, 4CL), V. vinifera (RS) | 酿酒酵母 | 0.29 mg/L[ |
山柰酚 槲皮苷 香豆素酸 柚皮素 | 苯丙氨酸 | P. trichocarpa x P. deltoides (PAL, CPR), G. max (C4H, 4CL, CHS, CHI, F3H), S.tuberosum (FLS) | 酿酒酵母 | 1.3 mg/L[ N 0.26 mg/L 0.38 mg/L |
柚皮素 | 葡萄糖 | A. thaliana (4CL3, CHS1, CHI1, C4H and PAL1, CPR CHS3), R. capsulatus (TAL1) | 酿酒酵母 | 112.9 mg/L[ |
圣草素 | 葡萄糖 L-酪氨酸 | R. glutinis (TAL), P. crispum (4CL), P. X hybrida (CHS), M. sativa (CHI), C. glutamicum (accBC, dtsR1), E. coli BL21(DE3) (acs) | 大肠杆菌 | 107 mg/L[ |
4-香豆酸 咖啡酸 阿魏酸 | 葡萄糖 | S. espanaensis (TAL,C3H), A. thaliana (COM) | 大肠杆菌 | 974 mg/L[ 150 mg/L 196 mg/L |
4-O-葡萄糖基白藜芦醇 | 葡萄糖 | S. espanaensis (TAL), A. hypogaea (STS), S. coelicolor A3(2) (ScCCL) | 大肠杆菌 | 7.5 mg/L[ |
樱花素 | 葡萄糖 | S. espanaensis (TAL), O. sativa (4CL), Populus euramericana (CHS), O. sativa (NOMT), E. coli (ppsA, tktA, aroGfbr, tyrAfbr) | 大肠杆菌 | 40.1 mg/L[ |
白藜芦醇 | 香豆酸 | A. thaliana (4CL1), V. vinifera (STS) E. coli (ACC/BirA) (Cerulenin added) | 大肠杆菌 | 2340 mg/L[ |
儿茶酸 | 圣草素 | C. sinensis (F3H), A. andraeanum (FDR), D. uncinatum (DuLAR) | 大肠杆菌 | 910.9 mg/L[ |
白皮杉醇 | 咖啡酸 | A. thaliana (4CL1), A. hypogaea (STS) | 大肠杆菌 | 13.3 mg/L[ |
7-O-甲基香橙素 | 香豆酸 | P. crispum (Pc4Cl-2), P. hybrid (PhCHS), M. sativa (CHI), A. thaliana (F3H), S. avermitilis (OMT), N. farcinica (AccBC, birA, acs) | 大肠杆菌 | 2.7 mg/L[ |
柚皮素 | 香豆酸 | S. coelicolor (CCL), A. thaliana (CHS) | 委内瑞拉链霉菌 | 4 mg/L[ |
柚皮素 花旗松素 | 葡萄糖 葡萄糖 | R. glutinis (TAL), P. crispum (4CL), P. hybrida (CHS), M. sativa (CHI), G. hybrida (F3′H), C. roseus (CPR), Y. lipolytica (ACS2, ACC1) | 耶氏解脂酵母 | 71.2 mg/L[ 48.1 mg/L |
产物 | 前体物质 | 异源基因及来源 | 底盘细胞 | 产量 |
---|---|---|---|---|
小檗碱 | (S)-网状番荔枝碱 | C. japonica (CAS), P. somniferum (MTI, BBE), A. thaliana (ATR1), C. japonica (STOX) | 酿酒酵母 | Ref.[ |
四氢小檗碱 | (S)-网状番荔枝碱 | C. japonica (CAS), P. somniferum (MT1, BBE), A. thaliana (ATR1) | 酿酒酵母 | 1.8 mg/L[ |
木兰花碱 | 多巴胺 | M. luteus (MAO), C. japonica (NCS, 6OMT, CYP80G2, CNMT,4OMT) | 大肠杆菌 酿酒酵母 | 7.2 mg/L[ |
蒂巴因 | 葡萄糖 甘油 | R. solanacearum (TYR), P. putida (DODC), M. luteus (MAO), A. thaliana (ATR2), P. somniferum (SalScut, SalR, SalAT) | 大肠杆菌 | 2.1 mg/L[ |
吗啡 | 蒂巴因 | P. somniferum (T6ODM,COR,CODM) | 酿酒酵母 | 131 mg/L[ |
(S)-网状番荔枝碱 | 甘油 | M. luteus (MAO), P. putida (DODC), R. solanacearum (TYR), C. japonica (NCS,6OMT,CNMT,4OMT) | 大肠杆菌 | 46.0 mg/L[ |
血根碱 | 去甲劳单碱 | A. thaliana (ATR1), E. californica (CFS,STS,P6H), P. somniferum (6OMT,OMT,TNMT) | 酿酒酵母 | 80 μg/L[ |
那可丁 | 去甲劳单碱 四氢小檗碱 | P. somniferum (MT1, MT2, MT3, SDR1, TNMT, CYP82Y1, CYP82X2), C. japonica (CAS), A. thaliana (ATR1) | 酿酒酵母 | 14.8 μmol/L[ |
表3 微生物合成生物碱类化合物
Table 3 Microbial synthesis of alkaloids
产物 | 前体物质 | 异源基因及来源 | 底盘细胞 | 产量 |
---|---|---|---|---|
小檗碱 | (S)-网状番荔枝碱 | C. japonica (CAS), P. somniferum (MTI, BBE), A. thaliana (ATR1), C. japonica (STOX) | 酿酒酵母 | Ref.[ |
四氢小檗碱 | (S)-网状番荔枝碱 | C. japonica (CAS), P. somniferum (MT1, BBE), A. thaliana (ATR1) | 酿酒酵母 | 1.8 mg/L[ |
木兰花碱 | 多巴胺 | M. luteus (MAO), C. japonica (NCS, 6OMT, CYP80G2, CNMT,4OMT) | 大肠杆菌 酿酒酵母 | 7.2 mg/L[ |
蒂巴因 | 葡萄糖 甘油 | R. solanacearum (TYR), P. putida (DODC), M. luteus (MAO), A. thaliana (ATR2), P. somniferum (SalScut, SalR, SalAT) | 大肠杆菌 | 2.1 mg/L[ |
吗啡 | 蒂巴因 | P. somniferum (T6ODM,COR,CODM) | 酿酒酵母 | 131 mg/L[ |
(S)-网状番荔枝碱 | 甘油 | M. luteus (MAO), P. putida (DODC), R. solanacearum (TYR), C. japonica (NCS,6OMT,CNMT,4OMT) | 大肠杆菌 | 46.0 mg/L[ |
血根碱 | 去甲劳单碱 | A. thaliana (ATR1), E. californica (CFS,STS,P6H), P. somniferum (6OMT,OMT,TNMT) | 酿酒酵母 | 80 μg/L[ |
那可丁 | 去甲劳单碱 四氢小檗碱 | P. somniferum (MT1, MT2, MT3, SDR1, TNMT, CYP82Y1, CYP82X2), C. japonica (CAS), A. thaliana (ATR1) | 酿酒酵母 | 14.8 μmol/L[ |
No. | 基因名称 | 植物来源 | 底物 | 糖基化位点 |
---|---|---|---|---|
1 | UGT71G1 | Medicago truncatula | medicagenic acid UDP- glucose | C-3, 28 [ |
2 | UGT73AD1 | Centella asiatica | asiatic acid, madecassic acid UDP- glucose | C-28[ |
3 | UGT73AE1 | Carthamus tinctorius | glycyrrhetinic acid UDP- glucose | C-3[ |
4 | UGT73AH1 | Centella asiatica | asiatic acid UDP- glucose | C-28 |
5 | UGT73C10 | Barbarea vulgaris | hederagenin, oleanolic acid UDP- glucose | C-3 |
6 | UGT73C11 | Barbarea vulgaris | hederagenin, oleanolic acid, glycyrrhetinic acid UDP- glucose | C-3[ |
7 | UGT73C12 | Barbarea vulgaris | hederagenin, oleanolic acid UDP- glucose | C-3 |
8 | UGT73C13 | Barbarea vulgaris | hederagenin, oleanolic acid UDP-glucose | C-3 |
9 | UGT73F2 | Glycine max | saponin A0-gα UDP-xylose | C-22[ |
10 | UGT73F3 | Medicago truncatula | hederagenin UDP- glucose | C-28[ |
11 | UGT73F4 | Glycine max | saponin A0-gα UDP-xylose | C-22[ |
12 | UGT73K1 | Medicago truncatula | hederagenin, soyasapogenols B and E UDP-glucose | C-3, 28[ |
13 | UGT74AE2 | Panax quinquefolium | protopanaxadiol UDP-glucose | C-3[ |
14 | UGT74M1 | Vaccaria hispanica | gypsogenic acid UDP-glucose | C-28[ |
15 | UGT94Q2 | Panax quinquefolium | ginsenoside Rh2 UDP-glucose | C-3[ |
16 | UGTPg1 | Panax ginseng | protopanaxadiol UDP-glucose | C-3[ |
17 | UGTPg100 | Panax ginseng | ginsenoside RF1, protopanaxatriol UDP-glucose | C-6 |
18 | UGTPg101 | Panax ginseng | ginsenoside RF1, protopanaxatriol UDP-glucose | C-6, 20 |
19 | Pg3-O-UGT1 | Panax quinquefolium | protopanaxadiol UDP-glucose | C-3 |
20 | GmSGT2 | Glycine max | soyasapogenol B monoglucuronide UDP-galactose | C-3[ |
21 | GmSGT3 | Glycine max | soyasaponin Ⅲ UDP-rhamnose | C-3[ |
表4 已鉴定的糖基转移酶及其反应底物和糖基化位点
Table 4 Identified glycosyltransferases and their reaction substrates and glycosylation sites
No. | 基因名称 | 植物来源 | 底物 | 糖基化位点 |
---|---|---|---|---|
1 | UGT71G1 | Medicago truncatula | medicagenic acid UDP- glucose | C-3, 28 [ |
2 | UGT73AD1 | Centella asiatica | asiatic acid, madecassic acid UDP- glucose | C-28[ |
3 | UGT73AE1 | Carthamus tinctorius | glycyrrhetinic acid UDP- glucose | C-3[ |
4 | UGT73AH1 | Centella asiatica | asiatic acid UDP- glucose | C-28 |
5 | UGT73C10 | Barbarea vulgaris | hederagenin, oleanolic acid UDP- glucose | C-3 |
6 | UGT73C11 | Barbarea vulgaris | hederagenin, oleanolic acid, glycyrrhetinic acid UDP- glucose | C-3[ |
7 | UGT73C12 | Barbarea vulgaris | hederagenin, oleanolic acid UDP- glucose | C-3 |
8 | UGT73C13 | Barbarea vulgaris | hederagenin, oleanolic acid UDP-glucose | C-3 |
9 | UGT73F2 | Glycine max | saponin A0-gα UDP-xylose | C-22[ |
10 | UGT73F3 | Medicago truncatula | hederagenin UDP- glucose | C-28[ |
11 | UGT73F4 | Glycine max | saponin A0-gα UDP-xylose | C-22[ |
12 | UGT73K1 | Medicago truncatula | hederagenin, soyasapogenols B and E UDP-glucose | C-3, 28[ |
13 | UGT74AE2 | Panax quinquefolium | protopanaxadiol UDP-glucose | C-3[ |
14 | UGT74M1 | Vaccaria hispanica | gypsogenic acid UDP-glucose | C-28[ |
15 | UGT94Q2 | Panax quinquefolium | ginsenoside Rh2 UDP-glucose | C-3[ |
16 | UGTPg1 | Panax ginseng | protopanaxadiol UDP-glucose | C-3[ |
17 | UGTPg100 | Panax ginseng | ginsenoside RF1, protopanaxatriol UDP-glucose | C-6 |
18 | UGTPg101 | Panax ginseng | ginsenoside RF1, protopanaxatriol UDP-glucose | C-6, 20 |
19 | Pg3-O-UGT1 | Panax quinquefolium | protopanaxadiol UDP-glucose | C-3 |
20 | GmSGT2 | Glycine max | soyasapogenol B monoglucuronide UDP-galactose | C-3[ |
21 | GmSGT3 | Glycine max | soyasaponin Ⅲ UDP-rhamnose | C-3[ |
1 | Williams D H , Stone M J , Hauck P R , et al . Why are secondary metabolites (natural products) biosynthesized?[J]. Journal of Natural Products, 1989, 52(6): 1189-1208. |
2 | Choi Y J , Lee S Y . Microbial production of short-chain alkanes[J]. Nature, 2013, 502(7472): 571-574. |
3 | Heider S A , Peters-Wendisch P , Wendisch V F , et al . Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids[J]. Applied Microbiology and Biotechnology, 2014, 98(10): 4355-4368. |
4 | George K W , Alonso-Gutierrez J , Keasling J D , et al . Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond[J]. Advances in Biochemical Engineering-Biotechnology, 2015, 148: 355-389. |
5 | Pemberton T A , Chen M , Harris G G , et al . Exploring the influence of domain architecture on the catalytic function of diterpene synthases[J]. Biochemistry, 2017, 56(14): 2010-2023. |
6 | Zhu M , Wang C , Sun W , et al . Boosting 11-oxo-beta-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metabolic Engineering, 2018, 45: 43-50. |
7 | Zhao Y , Fan J , Wang C , et al . Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae [J]. Bioresource Technology, 2018, 257: 339-343. |
8 | Kim K A , Lee J S , Park H J , et al . Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes[J]. Life Sciences, 2004, 74(22): 2769-2779. |
9 | Vanegas K G , Lehka B J , Mortensen U H . SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2017, 16(1): 25. |
10 | Alper H , Miyaoku K , Stephanopoulos G . Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets[J]. Nature Biotechnology, 2005, 23(5): 612-616. |
11 | Chan W K , Tan L T , Chan K G , et al . Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities[J]. Molecules, 2016, 21(5): 529. |
12 | Hu G , Peng C , Xie X , et al . Availability, pharmaceutics, security, pharmacokinetics, and pharmacological activities of patchouli alcohol[J]. Evidence Based Complementary and Alternative Medicine, 2017, 2017: 4850612. |
13 | Biggs B W , Lim C G , Sagliani K , et al . Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli [J]. Proceedings of the National Academy of Sciences, 2016, 113(12): 3209-3214. |
14 | Rico J , Pardo E , Orejas M . Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2010, 76(19): 6449-6454. |
15 | Amiri P , Shahpiri A , Asadollahi M A , et al . Metabolic engineering of Saccharomyces cerevisiae for linalool production[J]. Biotechnology Letters, 2016, 38(3): 503-508. |
16 | Alonso-Gutierrez J , Chan R , Batth T S , et al . Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production[J]. Metabolic Engineering, 2013, 19: 33-41. |
17 | Alonso-Gutierrez J , Kim E M , Batth T S , et al . Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering[J]. Metabolic Engineering, 2015, 28: 123-133. |
18 | Zhang H , Liu Q , Cao Y , et al . Microbial production of sabinene—a new terpene-based precursor of advanced biofuel[J]. Microbial Cell Factories, 2014, 13(1): 20. |
19 | Zhou J , Wang C , Yoon S H , et al . Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation[J]. Journal of Biotechnology, 2014, 169: 42-50. |
20 | Kim E M , Eom J H , Um Y , et al . Microbial synthesis of myrcene by metabolically engineered Escherichia coli [J]. Journal Agricultural and Food Chemistry, 2015, 63(18): 4606-4612. |
21 | Sarria S , Wong B , Martín H G , et al . Microbial synthesis of pinene[J]. ACS Synthetic Biology, 2014, 3(7): 466-475. |
22 | Jackson B E , Hart-Wells E A , Matsuda S P . Metabolic engineering to produce sesquiterpenes in yeast[J]. Organic Letters, 2003, 5(10): 1629-1632. |
23 | Paddon C J , Westfall P J , Pitera D J , et al . High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532. |
24 | Ro D K , Paradise E M , Ouellet M , et al . Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
25 | Scheler U , Brandt W , Porzel A , et al . Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast[J]. Nature Communications, 2016, 7: 12942. |
26 | Takahashi S , Yeo Y , Greenhagen B T , et al . Metabolic engineering of sesquiterpene metabolism in yeast[J]. Biotechnology and Bioengineering, 2007, 97(1): 170-181. |
27 | Cankar K , Van Houwelingen A , Bosch D , et al . A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene[J]. FEBS Letters, 2011, 585(1): 178-182. |
28 | Tsuruta H , Paddon C J , Eng D , et al . High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli [J]. PLoS One, 2009, 4(2): e4489. |
29 | Zhou Y J , Gao W , Rong Q , et al . Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. Journal of the American Chemical Society, 2012, 134(6): 3234-3241. |
30 | Guo J , Zhou Y J , Hillwig M L , et al . CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts[J]. Proceedings of the National Academy of Sciences, 2013, 110(29): 12108-12113. |
31 | Ignea C , Ioannou E , Georgantea P , et al . Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast[J]. Metabolic Engineering, 2015, 28: 91-103. |
32 | Ajikumar P K , Xiao W H , Tyo K E , et al . Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330(6000): 70-74. |
33 | Leonard E , Ajikumar P K , Thayer K , et al . Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control[J]. Proceedings of the National Academy Science United States of America, 2010, 107(31): 13654-13659. |
34 | Schalk M , Pastore L , Mirata M A , et al . Toward a biosynthetic route to sclareol and amber odorants[J]. Journal of the American Chemical Society, 2012, 134(46): 18900-18903. |
35 | Dai Z , Wang B , Liu Y , et al . Producing aglycons of ginsenosides in bakers' yeast[J]. Scientific Reports, 2014, 4: 3698. |
36 | Wang P , Wei Y , Fan Y , et al . Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts[J]. Metabolic Engineering, 2015, 29: 97-105. |
37 | Moses T , Pollier J , Almagro L , et al . Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum [J]. Proceedings of the National Academy of Sciences, 2014, 111(4): 1634-1639. |
38 | Li D , Zhang Q , Zhou Z , et al . Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli [J]. Biotechnology Letters, 2016, 38(4): 603-609. |
39 | Zhao J , Li Q , Sun T , et al . Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metabolic Engineering, 2013, 17: 42-50. |
40 | Lemuth K , Steuer K , Albermann C . Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin[J]. Microbial Cell Factories, 2011, 10(1): 29. |
41 | Kim S W , Kim J B , Ryu J M , et al . High-level production of lycopene in metabolically engineered E. coli [J]. Process Biochemistry, 2009, 44(8): 899-905. |
42 | Winkel-Shirley B . Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology, 2002, 5(3): 218-223. |
43 | Treutter D . Significance of flavonoids in plant resistance: a review[J]. Environmental Chemistry Letters, 2006, 4(3): 147-157. |
44 | Heim K E , Tagliaferro A R , Bobilya D J . Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships[J]. The Journal of Nutritional Biochemistry, 2002, 13(10): 572-584. |
45 | Kumar S , Pandey A K . Chemistry and biological activities of flavonoids: an overview[J]. Scientific World Journal, 2013, 2013: 162750. |
46 | Miyahisa I , Kaneko M , Funa N , et al . Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster[J]. Applied Microbiology and Biotechnology, 2005, 68(4): 498-504. |
47 | Wang Y , Chen S , Yu O . Metabolic engineering of flavonoids in plants and microorganisms[J]. Applied Microbiology and Biotechnology, 2011, 91(4): 949-956. |
48 | Hwang E I , Kaneko M , Ohnishi Y , et al . Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster[J]. Applied and Environmental Microbiology, 2003, 69(5): 2699-2706. |
49 | Ro D K , Douglas C J . Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway[J]. The Journal of Biological Chemistry, 2004, 279(4): 2600-2607. |
50 | Watts K T , Lee P C , Schmidt-Dannert C . Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli [J]. Chembiochem, 2004, 5(4): 500-507. |
51 | Miyahisa I , Funa N , Ohnishi Y , et al . Combinatorial biosynthesis of flavones and flavonols in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2006, 71(1): 53-58. |
52 | Trantas E , Panopoulos N , Ververidis F . Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2009, 11(6): 355-366. |
53 | Koopman F , Beekwilder J , Crimi B , et al . De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2012, 11(1): 155. |
54 | Zhu S , Wu J , Du G , et al . Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli [J]. Applied and Environmental Microbiology, 2014, 80(10): 3072-3080. |
55 | Kang S Y , Lee J K , Choi O , et al . Biosynthesis of methylated resveratrol analogs through the construction of an artificial biosynthetic pathway in E. coli [J]. BMC Biotechnology, 2014, 14(1): 67. |
56 | Hong Y S , Ahn J S , Sohng J K , et al . Construction of artificial biosynthetic pathways for resveratrol glucoside derivatives[J]. Journal of Microbiology and Biotechnology, 2014, 24(5): 614-618. |
57 | Kim M J , Kim B G , Ahn J H . Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2013, 97(16): 7195-7204. |
58 | Lim C G , Fowler Z L , Hueller T , et al . High-yield resveratrol production in engineered Escherichia coli [J]. Applied and Environmental Microbiology, 2011, 77(10): 3451-3460. |
59 | Zhao S , Jones J A , Lachance D M , et al . Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering[J]. Metabolic Engineering, 2015, 28: 43-53. |
60 | Watts K T , Lee P C , Schmidt-Dannert C . Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli [J]. BMC Biotechnology, 2006, 6(1): 22. |
61 | Malla S , Koffas M A , Kazlauskas R J , et al . Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli [J]. Applied and Environmental Microbiology, 2012, 78(3): 684-694. |
62 | Park S R , Yoon J A , Paik J H , et al . Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae [J]. Journal Biotechnology, 2009, 141(3/4): 181-188. |
63 | Lv Y , Edwards H , Zhou J , et al . Combining 26 S rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica [J]. ACS Synthetic Biology, 2019, 8(3): 568-576. |
64 | Hussain S A , Panjagari N R , Singh R R , et al . Potential herbs and herbal nutraceuticals: food applications and their interactions with food components[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(1): 94-122. |
65 | Brown S , Clastre M , Courdavault V , et al . De novo production of the plant-derived alkaloid strictosidine in yeast[J]. Proceedings of the National Academy Science United States of America, 2015, 112(11): 3205-3210. |
66 | Galanie S , Thodey K , Trenchard I J , et al . Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252): 1095-1100. |
67 | Dang T T T , Chen X , Facchini P J . Acetylation serves as a protective group in noscapine biosynthesis in opiumpoppy[J]. Nature Chemical Biology, 2015, 11(2): 104. |
68 | Li Y , Smolke C D . Engineering biosynthesis of the anticancer alkaloid noscapine in yeast[J]. Nature Communications, 2016, 7: 12137. |
69 | Urlacher V B , Girhard M . Cytochrome P450 monooxygenases: an update on perspectives for synthetic application[J]. Trends in Biotechnology, 2012, 30(1): 26-36. |
70 | Li Y , Li S , Thodey K , et al . Complete biosynthesis of noscapine and halogenated alkaloids in yeast[J]. Proceedings of the National Academy Science United States of America, 2018, 115(17): E3922-E3931. |
71 | Galanie S , Smolke C D . Optimization of yeast-based production of medicinal protoberberine alkaloids[J]. Microbial Cell Factories, 2015, 14: 144. |
72 | Minami H , Kim J S , Ikezawa N , et al . Microbial production of plant benzylisoquinoline alkaloids[J]. Proceedings of the National Academy of Sciences, 2008, 105(21): 7393-7398. |
73 | Nakagawa A , Matsumura E , Koyanagi T , et al . Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli [J]. Nature Communications, 2016, 7(1):10390. |
74 | Thodey K , Galanie S , Smolke C D . A microbial biomanufacturing platform for natural and semisynthetic opioids[J]. Nature Chemical Biology, 2014, 10(10): 837. |
75 | Nakagawa A , Minami H , Kim J S , et al . A bacterial platform for fermentative production of plant alkaloids[J]. Nature Communications, 2011, 2(1): 326. |
76 | Trenchard I J , Smolke C D . Engineering strategies for the fermentative production of plant alkaloids in yeast[J]. Metabolic Engineering, 2015, 30: 96-104. |
77 | Li Y , Smolke C D . Engineering biosynthesis of the anticancer alkaloid noscapine in yeast[J]. Nature Communications, 2016, 7: 12137. |
78 | Newman D J , Cragg G M . Natural products as sources of new drugs over the last 25 years[J]. Journal of Natural Products, 2007, 70(3): 461-477. |
79 | Choi S H , Kim H S , Yoon Y J , et al . Glycosyltransferase and its application to glycodiversification of natural products[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1208-1212. |
80 | Zhao Y , Lv B , Feng X , et al . Perspective on biotransformation and de novo biosynthesis of licorice constituents[J]. Journal Agricultural and Food Chemistry, 2017, 65(51): 11147-11156. |
81 | Osbourn A . Saponins and plant defence—a soap story[J]. Trends in Plant Science, 1996, 1(1): 4-9. |
82 | Wei W , Wang P , Wei Y , et al . Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts[J]. Molecular Plant, 2015, 8(9): 1412-1424. |
83 | Liu X , Zhang L , Feng X , et al . Biosynthesis of glycyrrhetinic acid-3-O-monoglucose using glycosyltransferase UGT73C11 from Barbarea vulgaris [J]. Industrial & Engineering Chemistry Research, 2017, 56(51): 14949-14958. |
84 | Achnine L , Huhman D V , Farag M A , et al . Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula [J]. Plant Journal, 2005, 41(6): 875-887. |
85 | De Costa F , Barber C J S , Kim Y B , et al . Molecular cloning of an ester-forming triterpenoid: UDP-glucose 28-O-glucosyltransferase involved in saponin biosynthesis from the medicinal plant Centella asiatica [J]. Plant Science, 2017, 262: 9-17. |
86 | Xie K , Chen R , Li J , et al . Exploring the catalytic promiscuity of a new glycosyltransferase from Carthamus tinctorius [J]. Organic Letters, 2014, 16(18): 4874-4877. |
87 | Sayama T , Ono E , Takagi K , et al . The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean[J]. The Plant Cell, 2012, 24(5): 2123-2138. |
88 | Yan X , Fan Y , Wei W , et al . Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24(6): 770-773. |
89 | Wang J , Li J , Li J , et al . Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax quinquefolium adventitious root[J]. Scientific Reports, 2016, 6: 37263. |
90 | Meesapyodsuk D , Balsevich J , Reed D W , et al . Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase[J]. Plant Physiology, 2007, 143(2): 959-969. |
91 | Jung S C , Kim W , Park S C , et al . Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd[J]. Plant and Cell Physiology, 2014, 55(12): 2177-2188. |
92 | Shibuya M , Nishimura K , Yasuyama N , et al . Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max [J]. FEBS Letters, 2010, 584(11): 2258-2264. |
93 | Bernini R , Crisante F , Ginnasi M C . A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC)[J]. Molecules, 2011, 16(2): 1418-1425. |
94 | Walle T . Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass?[J]. Seminars in Cancer Biology, 2007, 17(5): 354-362. |
95 | Shi Y Q , Xin X L , Zhang H C , et al . Microbial transformation of Norkurarinone by Cunninghamella blakesleana AS 3.970[J]. Journal of Asian Natural Products Research, 2012, 14(9): 906-912. |
96 | Carey J S , Laffan D , Thomson C , et al . Analysis of the reactions used for the preparation of drug candidate molecules[J]. Organic & Biomolecular Chemistry, 2006, 4(12): 2337-2347. |
[1] | 张昕哲, 孙文涛, 吕波, 李春. 植物天然产物氧化与微生物制造[J]. 化工学报, 2022, 73(7): 2790-2805. |
[2] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
[3] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[4] | 彭蕾, 姜岩, 夏如馨. 微生物修复Cr(Ⅵ)污染作用机制及研究进展[J]. 化工学报, 2021, 72(9): 4458-4468. |
[5] | 郑煜堃, 孙青, 陈振, 于慧敏. 微生物细胞工厂生产化学品的研究进展——以几种典型小分子和大分子化学品为例[J]. 化工学报, 2021, 72(12): 6109-6121. |
[6] | 张震, 曾雪城, 秦磊, 李春. 微生物细胞工厂的智能设计进展[J]. 化工学报, 2021, 72(12): 6093-6108. |
[7] | 张博, 何依然, 刘迎春, 王琦. 异喹啉类生物碱和G-四链体结合的分子动力学研究[J]. 化工学报, 2020, 71(1): 344-353. |
[8] | 唐存多, 史红玲, 和子涵, 丁朋举, 焦铸锦, 阚云超, 姚伦广. 重组大肠杆菌全细胞用于苯乙酮酸的绿色生物合成[J]. 化工学报, 2018, 69(6): 2627-2631. |
[9] | 朱明, 王彩霞, 李春. 工程化酿酒酵母合成植物三萜类化合物[J]. 化工学报, 2015, 66(9): 3350-3356. |
[10] | 赵雨佳, 张根林, 周晓宏, 李春. 核糖核酸开关用于微生物细胞工厂的智能与精细调控[J]. 化工学报, 2015, 66(10): 3811-2819. |
[11] | 付敏杰1, 聂尧1, 穆晓清1, 徐岩1,2, 肖荣3. 新型异亮氨酸双加氧酶及其重组大肠杆菌合成羟基异亮氨酸[J]. 化工进展, 2014, 33(11): 3037-3044. |
[12] | 杨振兴,陶志成,何玉财,王利群,张跃,邢震,龚磊,潘雪鹤. 红球菌CCZU10-1选择性氧化拆分外消旋苯甲亚砜的性能[J]. 化工进展, 2014, 33(10): 2744-2747. |
[13] | 杨利民,吕金萍,冯妍. 蒲公英总黄酮在聚乙二醇-硫酸铵双水相体系中的分配与提取[J]. 化工进展, 2014, 33(08): 1992-1996. |
[14] | 张艳,卢文玉. 酿酒酵母细胞表达异源萜类化合物的研究进展[J]. 化工进展, 2014, 33(05): 1265-1270. |
[15] | 马强强,赵广荣. 左旋多巴合成研究进展[J]. 化工进展, 2013, 32(06): 1367-1371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||