化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1702-1711.DOI: 10.11949/0438-1157.20200666
收稿日期:
2020-05-28
修回日期:
2020-09-18
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
魏砾宏
作者简介:
魏砾宏(1975—),女,博士,教授,基金资助:
WEI Lihong1(),FAN Yu1,FANG Fan2,GUO Liangzhen1,CHEN Yong2,YANG Tianhua1
Received:
2020-05-28
Revised:
2020-09-18
Online:
2021-03-05
Published:
2021-03-05
Contact:
WEI Lihong
摘要:
轻质芳烃(BTEXN)如苯、甲苯、乙苯、二甲苯和萘作为高价值化学原料,在工业中具有广泛应用。煤干馏焦油的精制是BTEXN重要生产方法之一。本文分别选用红沙泉和将军庙两种典型新疆高碱煤,通过逐级萃取及外源添加Na两种预处理方式,利用Py-GC/MS半定量研究了高碱煤中钠形态和含量,以及矿物组分类型对煤快速热解焦油及BTEXN产物分布的影响。结果表明,两种高碱煤中固有矿物质均可提高焦油及BTEXN析出量,水溶性矿物质(Na)对此起关键作用。内源性水溶性矿物及醋酸铵溶性矿物使红沙泉煤焦油析出量提高22%和55%;而外源添加的水溶性NaCl和醋酸铵溶性CH3COONa降低了将军庙煤焦油析出量。水溶性矿物及1.0%(质量)的NaCl和CH3COONa分别使煤焦油中的BTEXN析出量提高45%、42%和62%,醋酸铵溶性物质及低含量[0.4%(质量)]Na则会抑制BTEXN的析出。
中图分类号:
魏砾宏, 樊雨, 房凡, 郭良振, 陈勇, 杨天华. Na及矿物类型对高碱煤快速热解焦油及BTEXN产物分配的影响[J]. 化工学报, 2021, 72(3): 1702-1711.
WEI Lihong, FAN Yu, FANG Fan, GUO Liangzhen, CHEN Yong, YANG Tianhua. Effect of sodium and mineral types on distribution of tar and BTEXN under high alkali coal fast pyrolysis[J]. CIESC Journal, 2021, 72(3): 1702-1711.
项目 | 将军庙煤 | 红沙泉煤 |
---|---|---|
工业分析/%(mass, d) | ||
A | 7.43 | 8.80 |
V | 36.82 | 35.99 |
FC① | 55.75 | 55.21 |
元素分析/%(mass, d) | ||
C | 74.91 | 72.09 |
H | 3.76 | 4.20 |
O② | 12.56 | 13.44 |
N | 0.78 | 0.98 |
S | 0.56 | 0.49 |
灰分分析/%(mass) | ||
SiO2 | 26.52 | 39.77 |
Fe2O3 | 15.61 | 13.93 |
TiO2 | 0.48 | 0.95 |
Al2O3 | 8.71 | 16.73 |
CaO | 15.95 | 8.89 |
MgO | 9.55 | 5.55 |
K2O | 0.52 | 0.61 |
Na2O | 7.66 | 5.34 |
P2O5 | 0.11 | 0.30 |
热值/(MJ/kg) | 23.640 | 24.308 |
H/C | 0.60 | 0.69 |
O/C | 0.12 | 0.14 |
表1 煤质特性分析
Table 1 Analysis of coal quality characteristics
项目 | 将军庙煤 | 红沙泉煤 |
---|---|---|
工业分析/%(mass, d) | ||
A | 7.43 | 8.80 |
V | 36.82 | 35.99 |
FC① | 55.75 | 55.21 |
元素分析/%(mass, d) | ||
C | 74.91 | 72.09 |
H | 3.76 | 4.20 |
O② | 12.56 | 13.44 |
N | 0.78 | 0.98 |
S | 0.56 | 0.49 |
灰分分析/%(mass) | ||
SiO2 | 26.52 | 39.77 |
Fe2O3 | 15.61 | 13.93 |
TiO2 | 0.48 | 0.95 |
Al2O3 | 8.71 | 16.73 |
CaO | 15.95 | 8.89 |
MgO | 9.55 | 5.55 |
K2O | 0.52 | 0.61 |
Na2O | 7.66 | 5.34 |
P2O5 | 0.11 | 0.30 |
热值/(MJ/kg) | 23.640 | 24.308 |
H/C | 0.60 | 0.69 |
O/C | 0.12 | 0.14 |
金属 | 含量/(μg/g) | |||
---|---|---|---|---|
水溶性矿物 | 醋酸铵溶性矿物 | 盐酸溶性矿物 | 不溶性矿物 | |
K | 283 | 161 | 82 | 859 |
Ca | 873 | 6681 | 7472 | 2365 |
Na | 3113 | 734 | 145 | 277 |
Mg | 855 | 1926 | 804 | 782 |
表2 红沙泉煤中不同赋存形态的金属含量
Table 2 Metal content of different occurrence forms in Hongshaquan coal
金属 | 含量/(μg/g) | |||
---|---|---|---|---|
水溶性矿物 | 醋酸铵溶性矿物 | 盐酸溶性矿物 | 不溶性矿物 | |
K | 283 | 161 | 82 | 859 |
Ca | 873 | 6681 | 7472 | 2365 |
Na | 3113 | 734 | 145 | 277 |
Mg | 855 | 1926 | 804 | 782 |
样品 | 含量/(μg/g) |
---|---|
0.4DNa | 1586 |
1DNa | 3966 |
0.4DAc | 1121 |
1DAc | 2802 |
表3 单位质量样品中不同形态Na含量
Table 3 The Na content of different forms in each gram of sample
样品 | 含量/(μg/g) |
---|---|
0.4DNa | 1586 |
1DNa | 3966 |
0.4DAc | 1121 |
1DAc | 2802 |
芳烃化合物 | 峰面积×107 | |||
---|---|---|---|---|
H | HH | HAc | HL | |
苯 | 37.27 | 20.43 | 21.64 | 24.36 |
甲苯 | 32.51 | 17.43 | 18.99 | 20.68 |
乙苯 | 3.53 | 1.57 | 1.93 | 1.29 |
二甲苯 | 17.12 | 8.30 | 9.56 | 3.84 |
萘 | 16.91 | 8.94 | 7.22 | 9.32 |
萘基化合物 | 48.06 | 26.86 | 19.06 | 26.02 |
单环芳烃 | 25.37 | 11.01 | 12.88 | 26.34 |
茚 | 16.64 | 7.63 | 9.46 | 8.15 |
芴 | 29.95 | 8.23 | 7.53 | 12.50 |
蒽 | 15.64 | 29.69 | 9.42 | 19.68 |
菲 | 28.37 | 12.83 | 1.25 | 13.87 |
芘 | 17.75 | 24.17 | 7.63 | 24.52 |
总量 | 289.12 | 177.09 | 126.57 | 190.57 |
表4 煤逐级萃取焦油中芳烃化合物分布
Table 4 Distribution of aromatic compounds in tar after sequential extraction of Hongshaquan coal
芳烃化合物 | 峰面积×107 | |||
---|---|---|---|---|
H | HH | HAc | HL | |
苯 | 37.27 | 20.43 | 21.64 | 24.36 |
甲苯 | 32.51 | 17.43 | 18.99 | 20.68 |
乙苯 | 3.53 | 1.57 | 1.93 | 1.29 |
二甲苯 | 17.12 | 8.30 | 9.56 | 3.84 |
萘 | 16.91 | 8.94 | 7.22 | 9.32 |
萘基化合物 | 48.06 | 26.86 | 19.06 | 26.02 |
单环芳烃 | 25.37 | 11.01 | 12.88 | 26.34 |
茚 | 16.64 | 7.63 | 9.46 | 8.15 |
芴 | 29.95 | 8.23 | 7.53 | 12.50 |
蒽 | 15.64 | 29.69 | 9.42 | 19.68 |
菲 | 28.37 | 12.83 | 1.25 | 13.87 |
芘 | 17.75 | 24.17 | 7.63 | 24.52 |
总量 | 289.12 | 177.09 | 126.57 | 190.57 |
芳烃化合物 | 峰面积 ×107 | |||||
---|---|---|---|---|---|---|
J | DJ | 0.4DNa | 1DNa | 0.4DAc | 1DAc | |
苯 | 61.76 | 19.46 | 17.89 | 27.10 | 18.84 | 27.96 |
甲苯 | 51.74 | 15.54 | 12.78 | 22.95 | 15.67 | 25.50 |
乙苯 | 6.42 | 0.81 | 0.84 | 1.06 | 1.40 | 1.89 |
二甲苯 | 18.01 | 5.40 | 5.72 | 8.89 | 8.61 | 12.52 |
萘 | 23.84 | 7.60 | 6.73 | 9.41 | 6.95 | 11.17 |
萘基化合物 | 66.62 | 36.85 | 13.54 | 29.51 | 26.29 | 28.57 |
单环芳烃 | 62.01 | 13.47 | 5.32 | 13.59 | 10.83 | 3.94 |
茚 | 34.02 | 3.67 | 5.12 | 13.72 | 7.24 | 9.15 |
芴 | 23.97 | 8.29 | 4.66 | 9.99 | 7.93 | 8.86 |
蒽 | 11.23 | 27.38 | 9.00 | 14.21 | 9.99 | 12.23 |
菲 | 39.38 | 4.97 | 3.39 | 5.05 | 5.08 | 4.64 |
芘 | 21.71 | 11.34 | 5.53 | 7.18 | 8.83 | 8.30 |
总量 | 420.7 | 154.7 | 90.52 | 162.7 | 127.7 | 154.7 |
表5 J煤脱灰及添加Na焦油芳烃化合物分布
Table 5 Distribution of aromatic compounds in tar after demineralizing and adding Na
芳烃化合物 | 峰面积 ×107 | |||||
---|---|---|---|---|---|---|
J | DJ | 0.4DNa | 1DNa | 0.4DAc | 1DAc | |
苯 | 61.76 | 19.46 | 17.89 | 27.10 | 18.84 | 27.96 |
甲苯 | 51.74 | 15.54 | 12.78 | 22.95 | 15.67 | 25.50 |
乙苯 | 6.42 | 0.81 | 0.84 | 1.06 | 1.40 | 1.89 |
二甲苯 | 18.01 | 5.40 | 5.72 | 8.89 | 8.61 | 12.52 |
萘 | 23.84 | 7.60 | 6.73 | 9.41 | 6.95 | 11.17 |
萘基化合物 | 66.62 | 36.85 | 13.54 | 29.51 | 26.29 | 28.57 |
单环芳烃 | 62.01 | 13.47 | 5.32 | 13.59 | 10.83 | 3.94 |
茚 | 34.02 | 3.67 | 5.12 | 13.72 | 7.24 | 9.15 |
芴 | 23.97 | 8.29 | 4.66 | 9.99 | 7.93 | 8.86 |
蒽 | 11.23 | 27.38 | 9.00 | 14.21 | 9.99 | 12.23 |
菲 | 39.38 | 4.97 | 3.39 | 5.05 | 5.08 | 4.64 |
芘 | 21.71 | 11.34 | 5.53 | 7.18 | 8.83 | 8.30 |
总量 | 420.7 | 154.7 | 90.52 | 162.7 | 127.7 | 154.7 |
含氧及脂肪族化合物 | 峰面积×107 | |
---|---|---|
红沙泉煤 | 将军庙煤 | |
酚 | 85.62 | 106.57 |
酸 | 28.97 | 48.7 |
酮 | 11.08 | 15.12 |
醇 | 8.77 | 2.85 |
酯 | 7.33 | 6.85 |
醛 | 1.66 | 4.05 |
C6~C9 | 20.96 | 27.17 |
C10~C19 | 50.43 | 55.17 |
C20~C30 | 36.31 | 20.13 |
表A1 两种原煤焦油中含氧化合物及脂肪族化合物分布情况
Table A1 Distribution of oxygenates and aliphatic compounds in two kinds of raw tar
含氧及脂肪族化合物 | 峰面积×107 | |
---|---|---|
红沙泉煤 | 将军庙煤 | |
酚 | 85.62 | 106.57 |
酸 | 28.97 | 48.7 |
酮 | 11.08 | 15.12 |
醇 | 8.77 | 2.85 |
酯 | 7.33 | 6.85 |
醛 | 1.66 | 4.05 |
C6~C9 | 20.96 | 27.17 |
C10~C19 | 50.43 | 55.17 |
C20~C30 | 36.31 | 20.13 |
含氧及脂肪族化合物 | 峰面积×107 | |||||||
---|---|---|---|---|---|---|---|---|
HH | HAC | HL | DJ | 0.4DNa | 1DNa | 0.4DAc | 1DAc | |
酚 | 30.78 | 31.42 | 39.71 | 18.2 | 22.67 | 39.05 | 45.92 | 38.66 |
酸 | 83.09 | 45.87 | 56.73 | 56.68 | 29.34 | 18.39 | 52.10 | 47.69 |
酮 | 1.35 | 5.12 | 9.47 | 15.13 | 12.82 | 10.32 | 9.31 | 5.45 |
醇 | 4.31 | 3.21 | 10.52 | 2.73 | 1.12 | 5.90 | 4.63 | 2.23 |
酯 | 15.4 | 4.29 | 12.98 | 3.68 | 3.68 | 3.09 | 0.92 | 2.83 |
醛 | 1.15 | 0.7 | 1.16 | 0.31 | 0.41 | |||
C6~C9 | 3.88 | 3.86 | 4.12 | 5.36 | 3.17 | 4.13 | 2.86 | 2.75 |
C10~C19 | 25.68 | 11.59 | 14.16 | 18.63 | 6.47 | 7.18 | 11.45 | 5.69 |
C20~C30 | 58.97 | 2.87 | 9.48 | 23.6 | 10.83 | 3.07 | 1.96 | 4.15 |
表A2 预处理后各个样品焦油中含氧化合物及脂肪族化合物分布情况
Table A2 Distribution of oxygenates and aliphatic compounds in tar after pretreatment
含氧及脂肪族化合物 | 峰面积×107 | |||||||
---|---|---|---|---|---|---|---|---|
HH | HAC | HL | DJ | 0.4DNa | 1DNa | 0.4DAc | 1DAc | |
酚 | 30.78 | 31.42 | 39.71 | 18.2 | 22.67 | 39.05 | 45.92 | 38.66 |
酸 | 83.09 | 45.87 | 56.73 | 56.68 | 29.34 | 18.39 | 52.10 | 47.69 |
酮 | 1.35 | 5.12 | 9.47 | 15.13 | 12.82 | 10.32 | 9.31 | 5.45 |
醇 | 4.31 | 3.21 | 10.52 | 2.73 | 1.12 | 5.90 | 4.63 | 2.23 |
酯 | 15.4 | 4.29 | 12.98 | 3.68 | 3.68 | 3.09 | 0.92 | 2.83 |
醛 | 1.15 | 0.7 | 1.16 | 0.31 | 0.41 | |||
C6~C9 | 3.88 | 3.86 | 4.12 | 5.36 | 3.17 | 4.13 | 2.86 | 2.75 |
C10~C19 | 25.68 | 11.59 | 14.16 | 18.63 | 6.47 | 7.18 | 11.45 | 5.69 |
C20~C30 | 58.97 | 2.87 | 9.48 | 23.6 | 10.83 | 3.07 | 1.96 | 4.15 |
1 | Bell D, Towler B, Fan M. Coal Gasification and Its Applications[M]. Great Britain: Elsevier Inc.,2010. |
2 | Granda M, Blanco C, Alvarez P, et al. Chemicals from coal coking[J]. Chemical Reviews,2013,114(3): 1608-1636. |
3 | 国家统计局.2019年中国统计年鉴[M]. 北京:中国统计出版社, 2019. |
National Bureau of Statistics. China Statistical Yearbook 2019 [M]. Beijing: China Statistics Press, 2019. | |
4 | Meng J, Wang Z, Ma Y, et al. Hydrocracking of low-temperature coal tar over NiMo/Beta-KIT-6 catalyst to produce gasoline oil[J]. Fuel Process Technol, 2017, 165:62-71. |
5 | Rezaei P S, Shafaghat H, Daud W M A W. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review[J]. Appl. Catal. A Gen., 2014, 469 (17): 490-511. |
6 | Han J Z, Liu X X, Yue J R, et al. Catalytic upgrading of in situ coal pyrolysis tar over Ni-char catalyst with different additives[J]. Energy Fuel, 2014, 28 (8): 4934-4941. |
7 | Xu Z, Liang L T, Zhang Q, et al. A study on catalytic depolymerization of a typical perhydrous coal for improving tar yield[J]. J. Anal. Appl. Pyrolysis, 2019, 138: 242-248. |
8 | Huang Y, Wang N B, Liu Q X, et al. Co-pyrolysis of bituminous coal and biomass in a pressured fluidized bed[J]. Chinese J. Chemeng., 2019, 27(7): 1666-1673. |
9 | Li Y, Amin M N, Lu X. Pyrolysis and catalytic upgrading of low-rank coal using a NiO/MgO-Al2O3 catalyst[J]. Chem. Eng. Sci., 2016, 155: 194-200. |
10 | Yan L J, Bai Y H, Kong X J, et al. Effects of alkali and alkaline earth metals on the formation of light aromatic hydrocarbons during coal pyrolysis[J]. J. Anal. Appl. Pyrolysis, 2016, 122: 169-174. |
11 | Li G L, Yan L J, Zhao R F, et al. Improving aromatic hydrocarbons yield from coal pyrolysis volatile products over HZSM-5 and Mo-modified HZSM-5[J]. Fuel, 2014, 130: 154-159. |
12 | Jiang Y, Zong P J, Tian B, et al. Pyrolysis behaviors and product distribution of Shenmu coal at high heatingrate: a study using TG-FTIR and Py-GC/MS[J]. Energ. Convers. Manage., 2019, 179: 72-80. |
13 | Liu Y J,Yan L J,Bai Y H,et al. Catalytic upgrading of volatile from coal pyrolysis over faujasite zeolites[J]. J. Anal. Appl. Pyrolysis,2018,132:184-189. |
14 | He Y Y,Yan L J,Liu Y J, et al. Effect of SiO2/Al2O3 ratios of HZSM-5 zeolites on the formation of light aromatics during lignite pyrolysis[J]. Fuel Process Technol., 2019, 188: 70-78. |
15 | 钟梅,马凤云. 不同气氛下煤连续热解产物的分配规律及产品品质分析[J]. 燃料化学学报, 2013, 41(12): 1427-1436. |
Zhong M,Ma F Y. Distribution law and product quality analysis of continuous pyrolysis products of coal under different atmospheres[J]. J. Fuel Chem. Technol., 2013, 41(12): 1427-1436. | |
16 | He L, Hui H L, Lia S G, et al. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel, 2018, 216: 227-232. |
17 | Richard F S. Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Process Technol., 2010, 91(1): 25-32. |
18 | 宋维健, 宋国良, 齐晓宾, 等. 不同预处理方法对准东高碱煤中碱金属含量测定的影响[J]. 燃料化学学报,2016, 44(2): 162-167. |
Song W J, Song G L, Qi X B, et al. Effect of pretreatment methods on the determination of alkali metal content in high alkali metal Zhundong coal[J]. J. Fuel Chem. Technol., 2016, 44(2): 162-167. | |
19 | Liu Y Q, Cheng L M, Zhao Y G, et al. Transformation behavior of alkali metals in high-alkali coals [J]. Fuel Process Technol., 2018, 169: 288-294. |
20 | Wang C A, Liu T H, Jin X, et al. Effect of water washing on reactivities and NOx emission of Zhundong coals[J]. J. Energy Inst., 2016, 89: 636-647. |
21 | Ding C L, Qiang X, Zheng W, et al. Transformation of alkali and alkaline earth metals in Zhundong coal during pyrolysis in an entrained flow bed reactor[J]. J. Anal. Appl. Pyrolysis, 2019, 142:104661. |
22 | Jie D, Fan L, Ke C X. Study on the source of polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by Py-GC-MS[J]. Journal of Hazardous Materials, 2012, 243: 80-85. |
23 | 马亚亚, 马凤云, 莫文龙, 等. 酸洗脱灰处理对新疆和丰低阶煤结构和萃取性能的影响[J].燃料化学学报,2019, 47(6): 649-660. |
Ma Y Y, Ma F Y, Mo W L,et al. Effect of acid eluting ash treatment on the structure and extraction performance of Xinjiang Hefeng low rank coal[J]. J. Fuel Chem. Technol., 2019, 47(6) : 649-660. | |
24 | Peng L, Lun J Y, Yan L, et al. Catalytic upgrading of coal pyrolysis gaseous tar over hierarchical Y-type zeolites synthesized using microwave hydrothermal method[J]. Ind. Eng. Chem. Res., 2019, 58(47): 21817-21826. |
25 | Zhao Y L, Zhao P Z, Bo Z, et al. Catalytic fast pyrolysis of bamboo over micro-mesoporous composite molecular sieves using Py-GC/MS[J]. Energy Technol., 2017, 6(4): 728-736. |
26 | Li C Z, Sathe C, Kershaw J R, et al. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(3/4): 427-438. |
27 | 刘辉, 赵登, 姜雷宵, 等.羧酸钠对准东煤热解过程的影响[J]. 化工学报, 2016, 67( 11) : 4795-4801. |
Liu H, Zhao D, Jiang L X, et al. Effect of sodium carboxylate on pyrolysis of Zhundong coal( H-form coal)[J] . CIESC Journal, 2016, 67( 11) : 4795-4801. | |
28 | Lai C K, Chen S, Longwell P, et al. Thermal reactions of m-cresol over calcium oxide between 350 and 600℃[J]. Fuel, 1987, 66 (4): 525-531. |
29 | Zhou Y, Li G, Jin L J, et al. In situ analysis of catalytic effect of calcium nitrate on Shenmu coal pyrolysis with pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2018, 32(2): 1061-1069. |
[1] | 黄顺进, 张丽, 颜井冲, 王志刚, 雷智平, 李占库, 任世彪, 王知彩, 水恒福. 高碱煤与煤矸石掺烧SO2和NO减排及结渣抑制研究[J]. 化工学报, 2022, 73(12): 5581-5591. |
[2] | 王冠宇, 朱玲君, 周劲松, 王树荣. 基于组分协同效应的造纸厂固体废弃物热解特性研究[J]. 化工学报, 2022, 73(1): 393-401. |
[3] | 张溪,张立龙,李瑞,吴玉龙. 基于能量集成的秸秆生物质快速热解生命周期评价[J]. 化工学报, 2021, 72(5): 2792-2800. |
[4] | 蒋丽群,岳元茂,徐禄江,钱乐,刘世君,赵增立,李海滨,廖艳芬. 预处理促进木质纤维素快速热解生成左旋葡聚糖[J]. 化工学报, 2021, 72(4): 1825-1832. |
[5] | 金默, 刘道银, 陈晓平. 基于离散元方法的高碱煤灰沉积过程数值模拟研究[J]. 化工学报, 2021, 72(4): 1939-1946. |
[6] | 徐坤, 方阳, 宫梦, 陈应泉, 陈旭, 王贤华, 杨海平, 陈汉平. 葡萄糖催化热解制备左旋葡萄糖酮特性研究[J]. 化工学报, 2020, 71(8): 3594-3601. |
[7] | 孙来芝, 陈雷, 赵保峰, 杨双霞, 谢新苹, 孟凡军, 司洪宇. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
[8] | 卢艳军, 胡艳军, 余帆, 于文静. 基于Py-GC/MS的污泥含碳、氧官能团热解演化过程研究[J]. 化工学报, 2018, 69(10): 4378-4385. |
[9] | 冯冬冬, 赵义军, 张宇, 钱娟, 孙绍增. K和Ca元素对生物质快速热解瞬态轻烃及含氧气体的影响[J]. 化工学报, 2016, 67(7): 2970-2978. |
[10] | 冯冬冬, 赵义军, 唐文博, 张宇, 钱娟, 孙绍增. 热解温度及AAEM元素对生物质快速热解焦油的影响[J]. 化工学报, 2016, 67(6): 2558-2567. |
[11] | 陆强, 李文涛, 叶小宁, 郭浩强, 董长青. W2C/AC催化快速热解松木磨木木质素[J]. 化工学报, 2016, 67(11): 4843-4850. |
[12] | 郑燕, 李明, 朱锡锋. 城市污水污泥催化快速热解制备芳香烃和烯烃[J]. 化工学报, 2016, 67(11): 4802-4807. |
[13] | 陈磊, 陈汉平, 陆强, 宋扬, 丁学杰, 王贤华, 杨海平. 木质素结构及热解特性研究[J]. 化工学报, 2014, 65(9): 0-0. |
[14] | 陈磊, 陈汉平, 陆强, 宋扬, 丁学杰, 王贤华, 杨海平. 木质素结构及热解特性[J]. 化工学报, 2014, 65(9): 3626-3633. |
[15] | 张智博, 董长青, 叶小宁, 陆强, 刘永前. 利用固体磷酸催化热解纤维素制备左旋葡萄糖酮[J]. 化工学报, 2014, 65(3): 912-920. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||