化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1712-1721.DOI: 10.11949/0438-1157.20200843
王开珍1(),王书浩1,李韵浩1,周勇1,2(),高从堦1,2
收稿日期:
2020-06-29
修回日期:
2020-10-20
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
周勇
作者简介:
王开珍(1992—),男,硕士研究生,基金资助:
WANG Kaizhen1(),WANG Shuhao1,LI Yunhao1,ZHOU Yong1,2(),GAO Congjie1,2
Received:
2020-06-29
Revised:
2020-10-20
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHOU Yong
摘要:
以聚砜(PSF)为原料,N,N‐二甲基甲酰胺(DMF)为溶剂,4,4'-二氨基二苯砜(DDS)和均苯四甲酸二酐(PMDA)为添加物,在聚砜铸膜液中“原位合成”聚酰胺酸(PAA),采用浸没沉淀相转化法制备高水通量PSF超滤膜。使用傅里叶变换红外光谱仪(ATR-FTIR)和X射线光电子能谱分析(XPS)对膜表面化学组成进行分析,结果表明成功在膜表面引入PAA。膜的荷电性、水接触角、保湿性和水通量等性能测试表明,改性膜具有良好的保湿性和水渗透性。在0.1 MPa的运行压力下,改性膜的纯水通量和牛血清白蛋白(BSA)截留率均高于纯PSF超滤膜,纯水通量从221.39 L/(m2·h)增加至406.57 L/(m2·h),截留率从75.75%增加到96.14%;在0.01~0.1 MPa的运行压力范围内,改性膜水通量均高于纯PSF超滤膜。。
中图分类号:
王开珍, 王书浩, 李韵浩, 周勇, 高从堦. 原位合成法制备高通量聚砜超滤膜及其性能研究[J]. 化工学报, 2021, 72(3): 1712-1721.
WANG Kaizhen, WANG Shuhao, LI Yunhao, ZHOU Yong, GAO Congjie. Preparation and performance of high-flux polysulfone ultrafiltration membrane by in-situ synthesis[J]. CIESC Journal, 2021, 72(3): 1712-1721.
Membrane code | PSF/% (mass) | DDS/% (mass) | PMDA/%(mass) | DMF/%(mass) |
---|---|---|---|---|
PSF | 15.00 | 0.00 | 0.0000 | 85.00 |
PSF/PAA-1 | 15.00 | 0.20 | 0.1792 | 84.62 |
PSF/PAA-2 | 15.00 | 0.40 | 0.3584 | 84.24 |
PSF/PAA-3 | 15.00 | 0.60 | 0.5376 | 83.86 |
表1 PSF铸膜液组分
Table 1 Composition of PSF casting solution
Membrane code | PSF/% (mass) | DDS/% (mass) | PMDA/%(mass) | DMF/%(mass) |
---|---|---|---|---|
PSF | 15.00 | 0.00 | 0.0000 | 85.00 |
PSF/PAA-1 | 15.00 | 0.20 | 0.1792 | 84.62 |
PSF/PAA-2 | 15.00 | 0.40 | 0.3584 | 84.24 |
PSF/PAA-3 | 15.00 | 0.60 | 0.5376 | 83.86 |
Membrane code | Casting solution viscosity /(mPa·s) | Average surface pore size /nm |
---|---|---|
PSF | 306±2 | 11.3 |
PSF/PAA-1 | 316±1 | 11.1 |
PSF/PAA-2 | 330±2 | 10.9 |
PSF/PAA-3 | 346±1 | 10.2 |
表2 纯PSF和PSF/PAA超滤膜的性能
Table 2 Performances of the pure PSF and PSF/PAA UF membranes
Membrane code | Casting solution viscosity /(mPa·s) | Average surface pore size /nm |
---|---|---|
PSF | 306±2 | 11.3 |
PSF/PAA-1 | 316±1 | 11.1 |
PSF/PAA-2 | 330±2 | 10.9 |
PSF/PAA-3 | 346±1 | 10.2 |
1 | Luo M, Liu T, Meng F H, et al. Identifying climate change impacts on water resources in Xinjiang, China[J]. Science of The Total Environment, 2019, 676: 613-626. |
2 | Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072. |
3 | Tao J, Wang J L, Zhu L Y, et al. Integrated design of multi-stage membrane separation for landfill gas with uncertain feed[J]. Journal of Membrane Science, 2019, 590: 117260. |
4 | Zhang R Y, Huang Y, Sun C B, et al. Study on ultrasonic techniques for enhancing the separation process of membrane[J]. Ultrasonics Sonochemistry, 2019, 55: 341-347. |
5 | 许浩, 顾凯锋, 李韵浩, 等. 低截留分子量聚醚砜超滤膜[J]. 化工学报, 2019, 70(5): 1999-2006. |
Xu H, Gu K F, Li Y H, et al. Polyethersulfone ultrafiltration membrane with low molecular weight cut off[J]. CIESC Journal, 2019, 70(5): 1999-2006. | |
6 | Bernardo G, Araújo T, da Silva Lopes T, et al. Recent advances in membrane technologies for hydrogen purification[J]. International Journal of Hydrogen Energy, 2020, 45(12): 7313-7338. |
7 | 朱鋆珊, 马平, 郭丽. 膜分离技术及其应用[J]. 当代化工, 2017, 46(6): 1193-1199. |
Zhu Y S, Ma P, Guo L. The membrane separation technology and its application[J]. Contemporary Chemical Industry, 2017, 46(6): 1193-1199. | |
8 | Vincent-Vela M C, Álvarez-Blanco S, Lora-García J, et al. Application of several pretreatment technologies to a wastewater effluent of a petrochemical industry finally treated with reverse osmosis[J]. Desalination and Water Treatment, 2015, 55(13): 3653-3661. |
9 | 张建友, 陈志明, 王芳, 等. 大豆酱油分子质量超滤分级及抗氧化活性研究[J]. 中国食品学报, 2019, 19(1): 48-54. |
Zhang J Y, Chen Z M, Wang F, et al. Studies on the molecular weight ultrafiltration of soybean soy sauce and its antioxidant activity[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(1): 48-54. | |
10 | Fiksdal L, Leiknes T. The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water[J]. Journal of Membrane Science, 2006, 279(1/2): 364-371. |
11 | Cui J Y, Zhou Z P, Xie A T, et al. Facile synthesis of degradable CA/CS imprinted membrane by hydrolysis polymerization for effective separation and recovery of Li+[J]. Carbohydrate Polymers, 2019, 205: 492-499. |
12 | Vatanpour V, Rabiee H, Davood Abadi Farahani M H, et al. Preparation and characterization of novel nanoporous SBA-16-COOH embedded polysulfone ultrafiltration membrane for protein separation[J]. Chemical Engineering Research and Design, 2020, 156: 240-250. |
13 | Fujiwara M, Kikuchi M. Solar desalination of seawater using double-dye-modified PTFE membrane[J]. Water Research, 2017, 127: 96-103. |
14 | Zambianchi M, Durso M, Liscio A, et al. Graphene oxide doped polysulfone membrane adsorbers for the removal of organic contaminants from water[J]. Chemical Engineering Journal, 2017, 326: 130-140. |
15 | Ahmad A L, Abdulkarim A A, Ooi B S, et al. Recent development in additives modifications of polyethersulfone membrane for flux enhancement[J]. Chemical Engineering Journal, 2013, 223: 246-267. |
16 | Mondal M, De S. Characterization and antifouling properties of polyethylene glycol doped PAN-CAP blend membrane[J]. RSC Advances, 2015, 5(49): 38948-38963. |
17 | 芦文慧, 黄肖容. 聚砜超滤膜亲水改性的研究进展[J]. 现代化工, 2017, 37(8): 23-27. |
Lu W H, Huang X R. Research progress on hydrophilic modification of polysulfone ultrafiltration memebranes[J]. Modern Chemical Industry, 2017, 37(8): 23-27. | |
18 | Rana D, Matsuura T. Surface modifications for antifouling membranes[J]. Chemical Reviews, 2010, 110(4): 2448-2471. |
19 | Shaffer D L, Jaramillo H, Romero-Vargas Castrillón S, et al. Post-fabrication modification of forward osmosis membranes with a poly(ethylene glycol) block copolymer for improved organic fouling resistance[J]. Journal of Membrane Science, 2015, 490: 209-219. |
20 | Straub A P, Asa E L, Zhang W, et al. In-situ graft-polymerization modification of commercial ultrafiltration membranes for long-term fouling resistance in a pilot-scale membrane bioreactor[J]. Chemical Engineering Journal, 2020, 382:122865 |
21 | Liu H W, Yang S S, Liu Y W, et al. Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning[J]. Journal of Membrane Science, 2019, 579: 230-239. |
22 | Ogata N, Sanui K, Itaya H. In-situ direct polycondensation in polymer matrices I. In-situ direct polycondensation in polyarylate[J]. Polymer Journal, 1990, 22: 85-91. |
23 | Sanui K, Ogata N, Kamitani K, et al. In-situ direct polycondensation in polymer matrices. II. In-situ direct polycondensation in styrene-butadiene block copolymers[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 1993, 31(3): 597-602. |
24 | 安佳, 王永杰, 李芳, 等. 采用聚酰胺酸层的高灵敏度长周期光纤光栅温度传感器[J]. 红外与激光工程, 2018, 47(8): 346-352. |
An J, Wang Y J, Li F, et al. Highly sensitive LPG temperature sensor employing polyamic acid-coating[J]. Infrared and Laser Engineering, 2018, 47(8): 346-352. | |
25 | Liu Y, Wu W, Chen Y, et al. The effects of polyamic acid on curing behavior, thermal stability, and mechanical properties of epoxy/DDS system[J]. Journal of Applied Polymer Science, 2013, 127(4): 3213-3220. |
26 | Gaw K, Jikei M, Kakimoto M A, et al. Adhesion behaviour of polyamic acid cured epoxy[J]. Polymer, 1997, 38(17): 4413-4415. |
27 | 李秀茹, 童跃进, 陈庆华. 聚酰胺酸稳定性的研究[J]. 福建师范大学学报(自然科学版), 2001, 17(1): 57-60. |
Li X R, Tong Y J, Chen Q H. Investigation of store-stability of poly(amic acid)s[J]. Journal of Fujian Teachers University(Natural Science), 2001, 17(1): 57-60. | |
28 | Zhang E S, Zhao Y, Yang W K, et al. Viscoelastic behaviour and relaxation modes of one polyamic acid organogel studied by rheometers and dynamic light scattering[J]. Soft Matter, 2017, 14(1): 73-82. |
29 | Yu H C, Choi J Y, Jeong J W, et al. Simple and easy recycling of poly(amic acid) gels through microwave irradiation[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2017, 55(6): 981-987. |
30 | 王佳倩, 王书浩, 沈红梅, 等. 部分嵌入式静电自组装改性聚酰胺反渗透膜[J]. 高校化学工程学报, 2019, 33(2): 475-482. |
Wang J Q, Wang S H, Shen H M, et al. Modification of polyamide RO membranes by a partially embedded electrostatic self-assembly method[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(2): 475-482. | |
31 | 王艳, 秦文浩, 陆忠杰, 等. 工艺条件对合成聚酰胺酸的影响[J]. 广州化工, 2012, 40(15): 76-78. |
Wang Y, Qin W H, Lu Z J, et al. The influence of technological conditions on synthesis of polyamide acid[J]. GuangZhou Chemical Industry, 2012, 40(15): 76-78. | |
32 | Zhai Y, Yang Q, Zhu R Q, et al. The study on imidization degree of polyamic acid in solution and ordering degree of its polyimide film[J]. Journal of Materials Science, 2008, 43(1): 338-344. |
33 | Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1/2/3): 149-167. |
34 | Wang Z, Wu Z Y, Zhang Y F, et al. Hyperbranched-polyol-tethered poly(amic acid) electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal[J]. Applied Surface Science, 2017, 402: 21-30. |
35 | Zhang X, Wang Y, Liu Y F, et al. Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions[J]. Applied Surface Science, 2014, 316: 333-340. |
36 | 邓东旭, 王磊, 李兴飞, 等. 超滤过程中蛋白质带电性对水合作用的影响机制[J]. 哈尔滨工业大学学报, 2017, 49(8): 78-82. |
Deng D X, Wang L, Li X F, et al. Effect mechanism of protein electrical property to hydration in ultrafiltration[J]. Journal of Harbin Institute of Technology, 2017, 49(8): 78-82. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[3] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[9] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[12] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[13] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[14] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[15] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||