化工学报 ›› 2016, Vol. 67 ›› Issue (11): 4843-4850.DOI: 10.11949/j.issn.0438-1157.20160804
陆强, 李文涛, 叶小宁, 郭浩强, 董长青
收稿日期:
2016-06-12
修回日期:
2016-08-10
出版日期:
2016-11-05
发布日期:
2016-11-05
通讯作者:
陆强(1982-),男,博士,副教授,associateprofessor,qianglu@mail.ustc.edu.cn
基金资助:
国家自然科学基金项目(51576064);中央高校基本科研业务费专项资金项目(2016YQ05,2016MS55)。
LU Qiang, LI Wentao, YE Xiaoning, GUO Haoqiang, DONG Changqing
Received:
2016-06-12
Revised:
2016-08-10
Online:
2016-11-05
Published:
2016-11-05
Supported by:
supported by the National Natural Science Foundation of China (51576064) and Fundamental Research Funds for the Central Universities (2016YQ05, 2016MS55).
摘要:
以活性炭(AC)为载体制备了不同钨负载量的W2C/AC催化剂,将其和松木磨木木质素(MWL)机械混合后进行Py-GC/MS(快速热解-气相色谱/质谱联用)实验,考察了钨负载量、催化剂/MWL比例对产物分布的影响,并通过外标法对主要产物(芳烃类和酚类)的真实产率进行了定量分析。结果表明,W2C/AC催化剂可有效促进木质素的热解解聚生成单酚类产物,并对酚类产物具有脱羰基、脱甲氧基、脱羟基以及加氢的效果,从而促进稳定的酚类产物(不含羰基、甲氧基和不饱和碳碳双键)和芳烃类产物的生成。在4种W2C/AC催化剂中,10%-W2C/AC的催化效果最佳,在催化剂/MWL比例为5时热解产物总产率达到最大值,此时芳烃类和酚类产物的总产率由无催化剂时的21.2 mg·g-1和151.0 mg·g-1增加至102.1 mg·g-1和191.1 mg·g-1。
中图分类号:
陆强, 李文涛, 叶小宁, 郭浩强, 董长青. W2C/AC催化快速热解松木磨木木质素[J]. 化工学报, 2016, 67(11): 4843-4850.
LU Qiang, LI Wentao, YE Xiaoning, GUO Haoqiang, DONG Changqing. Fast catalytic pyrolysis of pine milled wood lignin with W2C/AC[J]. CIESC Journal, 2016, 67(11): 4843-4850.
[1] | LU Q, LI W Z, ZHU X F. Overview of fuel properties of biomass fast pyrolysis oils[J]. Energy Conversion and Management, 2009, 50(5):1376-1383. |
[2] | 陈磊, 陈汉平, 陆强, 等. 木质素结构及热解特性研究[J]. 化工学报, 2014, 65(9):3626-3633. CHEN L, CHEN H P, LU Q, et al. Characterization of structure and pyrolysis behavior of lignin[J]. CIESC Journal, 2014, 65(9):3626-3633. |
[3] | SCHOLZE B, MEIER D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin) (Ⅰ):PY-GC/MS, FTIR, and functional groups[J]. Journal of Analytical and Applied Pyrolysis, 2001, 60(1):41-54. |
[4] | LU Q, ZHANG Y, TANG Z, et al. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts[J]. Fuel, 2010, 89(8):2096-2103. |
[5] | PENG C N, ZHANG G Y, YUE J R, et al. Pyrolysis of lignin for phenols with alkaline additive[J]. Fuel Processing Technology, 2014, 124:212-221. |
[6] | MANTE O D, RODRIGUEZ J A, BABU S P. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols[J]. Bioresource Technology, 2013, 148(7):508-516. |
[7] | 王芸, 邵珊珊, 张会岩, 等. 生物质模化物催化热解制取烯烃和芳香烃[J]. 化工学报, 2015, 66(8):3022-3028. WANG Y, SHAO S S, ZHANG H Y, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8):3022-3028. |
[8] | LU Q, TANG Z, ZHANG Y, et al. Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts[J]. Industrial & Engineering Chemistry Research, 2010, 49(6):2573-2580. |
[9] | ZHANG Z B, LU Q, YE X N, et al. Selective production of 4-ethyl phenol from low-temperature catalytic fast pyrolysis of herbaceous biomass[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115:307-315. |
[10] | TALUKDAR A K, BHATTACHARYYA K G, SIVASANKER S. Hydrogenation of phenol over supported platinum and palladium catalysts[J]. Applied Catalysis A:General, 1993, 96(2):229-239. |
[11] | DWIATMOKO A A, ZHOU L P, KIM I, et al. Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts[J]. Catalysis Today, 2015, 265:192-198. |
[12] | SUN J, ZHENG M Y, WANG X D, et al. Catalytic performance of activated carbon supported tungsten carbide for hydrazine decomposition[J]. Catalysis Letters, 2008, 123(1/2):150-155. |
[13] | HUANG Y B, CHEN M Y, YAN L, et al. Nickel-tungsten carbide catalysts for the production of 2,5-dimethylfuran from biomass-derived molecules[J]. ChemSusChem, 2014, 7(4):1068-1072. |
[14] | JI N, ZHANG T, ZHENG M Y, et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angewandte Chemie, 2008, 120(44):8638-8641. |
[15] | CHEN Y X, ZHENG Y, LI M, et al. Arene production by W2C/MCM-41-catalyzed upgrading of vapors from fast pyrolysis of lignin[J]. Fuel Processing Technology, 2015, 134:46-51. |
[16] | WEN J L, SUN S L, XUE B L, et al. Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens)[J]. Holzforschung, 2013, 67(6):613-627. |
[17] | LIANG C H, TIAN F P, LI Z L, et al. Preparation and adsorption properties for thiophene of nanostructured W2C on ultrahigh-surface-area carbon materials[J]. Chemistry of Materials, 2003, 15(25):4846-4853. |
[18] | SINGLA G, SINGH K, PANDEY O P. Synthesis of carbon coated tungsten carbide nano powder using hexane as carbon source and its structural, thermal and electrocatalytic properties[J]. International Journal of Hydrogen Energy, 2015, 40(16):5628-5637. |
[19] | HU L H, JI S F, XIAO T C, et al. Preparation and characterization of tungsten carbide confined in the channels of SBA-15 mesoporous silica[J]. The Journal of Physical Chemistry B, 2007, 111(14):3599-3608. |
[20] | BU Q, LEI H W, WANG L, et al. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons[J]. Bioresource Technology, 2014, 162:142-147. |
[21] | PANDEY M P, KIM C S. Lignin depolymerization and conversion:a review of thermochemical methods[J]. Chem. Eng. Technol., 2011, 34:29-41. |
[22] | HOSOYA T, KAWAMOTO H, SAKA S. Solid/liquid-and vapor-phase interactions between cellulose-and lignin-derived pyrolysis products[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85:237-246. |
[23] | BAI X L, KIM K H, BROWN R C, et al. Formation of phenolic oligomers during fast pyrolysis of lignin[J]. Fuel, 2014, 128:170-179. |
[24] | KOTAKE T, KAWAMOTO H, SAKA S. Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105:309-316. |
[25] | ASMADI M, KAWAMOTO H, SAKA S. The effects of combining guaiacol and syringol on their pyrolysis[J]. Holzforschung, 2012, 66:323-330. |
[26] | ZHOU S, GARCIA-PEREZ M, PECHA B, et al. Effect of the fast pyrolysis temperature on the primary and secondary products of lignin[J]. Energ. Fuel, 2013, 27:5867-5877. |
[27] | CHRISTENSEN K O, CHEN D, LØDENG R, et al. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming[J]. Applied Catalysis A:General, 2006, 314(1):9-22. |
[28] | CARLSON T R, JAE J, LIN Y C, et al. Catalytic fast pyrolysis of glucose with HZSM-5:the combined homogeneous and heterogeneous reactions[J]. Journal of Catalysis, 2010, 270(1):110-124. |
[29] | ZHENG M Y, WANG A Q, JI N, et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1):63-66.and aromatic hydrocarbons[J].CIESC Jouranl,2015,66(8):3022-3028. |
[8] | LU Q,TANG Z,ZHANG Y,et al.Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts[J].Industrial&Engineering Chemistry Research,2010,49(6):2573-2580. |
[9] | ZHANG Z B,LU Q,YE X N,et al.Selective production of 4-ethyl phenol from low-temperature catalytic fast pyrolysis of herbaceous biomass[J].Journal of Analytical and Applied Pyrolysis,2015,115:307-315. |
[10] | TALUKDAR A K,BHATTACHARYYA K G,SIVASANKER S.Hydrogenation of phenol over supported platinum and palladium catalysts[J].Applied Catalysis A:General,1993,96(2):229-239. |
[11] | DWIATMOKO A A,ZHOU L P,KIM I,et al.Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts[J].Catalysis Today,2015.265:192-198. |
[12] | SUN J,ZHENG M Y,WANG X D,et al.Catalytic Performance of activated carbon supported tungsten carbide for hydrazine decomposition[J].Catalysis Letters,2008,123(1-2):150-155. |
[13] | HUANG Y B,CHEN M Y,YAN L,et al.Nickel-tungsten carbide catalysts for the production of 2,5-dimethylfuran from biomass-derived molecules[J].ChemSusChem,2014,7(4):1068-1072. |
[14] | JI N,ZHANG T,ZHENG M Y,et al.Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J].Angewandte Chemie,2008,120(44):8638-8641. |
[15] | CHEN Y X,ZHENG Y,LI M,et al.Arene production by W2C/MCM-41-catalyzed upgrading of vapors from fast pyrolysis of lignin[J].Fuel Processing Technology,2015,134:46-51. |
[16] | WEN J L,SUN S L,XUE B L,et al.Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens)[J].Holzforschung,2013,67(6):613-627. |
[17] | LIANG C H,TIAN F P,LI Z L,et al.Preparation and adsorption properties for thiophene of nanostructured W2C on ultrahigh-surface-area carbon materials[J].Chemistry of Materials,2003,15(25):4846-4853. |
[18] | SINGLA G,SINGH K,PANDEY O P.Synthesis of carbon coated tungsten carbide nano powder using hexane as carbon source and its structural,thermal and electrocatalytic properties[J].International Journal of Hydrogen Energy,2015,40(16):5628-5637. |
[19] | HU L H,JI S F,XIAO T C,et al.Preparation and characterization of tungsten carbide confined in the channels of SBA-15 mesoporous silica[J].The Journal of Physical Chemistry B,2007,111(14):3599-3608. |
[20] | BU Q,LEI H W,WANG L,et al.Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons[J].Bioresource Technology,2014,162:142-147. |
[21] | PANDEY M P,KIM C S.Lignin depolymerization and conversion:A review of thermochemical methods[J].Chem.Eng.Technol.,2011,34:29-41. |
[22] | HOSOYA T,KAWAMOTO H,SAKA S.Solid/liquid-and vapor-phase interactions between cellulose-and lignin-derived pyrolysis products[J].Journal of Analytical and Applied Pyrolysis,2009,85:237-246. |
[23] | BAI X L,KIM K H,BROWN R C,et al.Formation of phenolic oligomers during fast pyrolysis of lignin[J].Fuel,2014,128:170-179. |
[24] | KOTAKE T,KAWAMOTO H,SAKA S.Mechanisms for the formation of monomers and oligomers during the pyrolysis of a softwood lignin[J].Journal of Analytical and Applied Pyrolysis,2014,105:309-316. |
[25] | ASMADI M,KAWAMOTO H,SAKA S.The effects of combining guaiacol and syringol on their pyrolysis[J].Holzforschung,2012,66:323-330. |
[26] | ZHOU S,GARCIA-PEREZ M,PECHA B,et al.Effect of the fast pyrolysis temperature on the primary and secondary products of lignin[J].Energ Fuel,2013,27:5867-5877. |
[27] | CHRISTENSEN K O,CHEN D,LØDENG R,et al.Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming[J].Applied Catalysis A:General,2006,314(1):9-22. |
[28] | CARLSON T R,JAE J,LIN Y C,et al.Catalytic fast pyrolysis of glucose with HZSM-5:the combined homogeneous and heterogeneous reactions[J].Journal of Catalysis,2010,270(1):110-124. |
[29] | ZHENG M Y,WANG A Q,JI N,et al.Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J].ChemSusChem,2010,3(1):63-66. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||