化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6163-6178.DOI: 10.11949/0438-1157.20250274

• 综述与专论 • 上一篇    

三维孔道结构催化剂的制备及其在气体纯化领域的研究进展

胡敏睿1(), 杨占兵1(), 李帅2,3, 殷朝辉2,3()   

  1. 1.北京科技大学冶金与生态工程学院,北京 100083
    2.中国有研科技集团有限公司,国家有色金属新能源材料与制品工程技术研究中心,北京 100088
    3.有研工程技术研究院有限公司,北京 101407
  • 收稿日期:2025-03-20 修回日期:2025-05-09 出版日期:2025-12-31 发布日期:2026-01-23
  • 通讯作者: 杨占兵,殷朝辉
  • 作者简介:胡敏睿,(2000—),男,硕士研究生,hmr893188163@163.com
  • 基金资助:
    中国有研科技集团有限公司青年基金项目(JT62042222407);国家重点研发计划项目(2023YFB4005903)

Preparation of catalysts with three-dimensional pore structure and its research progress in gas purification field

Minrui HU1(), Zhanbing YANG1(), Shuai LI2,3, Zhaohui YIN2,3()   

  1. 1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2.National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, China GRINM Group Co. , Ltd. , Beijing 100088 ; China
    3.GRIMAT Engineering Institute Co. , Ltd. , Beijing 101407, China
  • Received:2025-03-20 Revised:2025-05-09 Online:2025-12-31 Published:2026-01-23
  • Contact: Zhanbing YANG, Zhaohui YIN

摘要:

三维有序大孔(three-dimensional ordered macropores,3DOM)催化剂因其独特的孔道结构、高比表面积和优异的传质性能,在气体催化吸附领域展现出巨大潜力。然而,3DOM催化剂的制备工艺复杂,面临孔径分布不均匀、合成耗时长、产率低等问题,且孔道的均匀性和稳定性易受到合成条件的影响,导致催化性能不稳定。因此,低成本、高效率的制备工艺,以及可调控的材料孔径、表面化学性质及活性组分,使其适用于特定气体的催化吸附是3DOM催化剂当前的研究重点。综述了胶晶模板法制备3DOM催化剂的工艺优化策略,分析了不同活性组分对VOCs、CO、NO x 、H2S及CO2等气体的催化吸附机制,并探讨了多级孔结构对反应动力学的促进作用。最后,展望了3DOM催化剂在工业气体净化与碳中和领域的应用前景。

关键词: 胶体晶体, 3DOM, 催化剂, 催化, 气体纯化, 吸附, 双级孔结构, 传质

Abstract:

Three-dimensionally ordered macroporous (3DOM) catalysts have demonstrated significant potential in gas catalytic adsorption due to their unique pore architecture, high specific surface area, and superior mass transfer properties. However, the preparation process of 3DOM catalysts is complicated, and it faces problems such as uneven pore size distribution, long synthesis time and low yield. In addition, the uniformity and stability of the pores are easily affected by the synthesis conditions, resulting in unstable catalytic performance. Consequently, current research focuses on developing low-cost and high-efficiency preparation methods, alongside precise regulation of material pore size, surface chemistry, and active components to tailor catalysts for specific gas adsorption applications. This review systematically summarizes optimization strategies for 3DOM catalyst fabrication via colloidal crystal templating, analyses the catalytic adsorption mechanisms of diverse active components toward VOCs, CO, NO x, H2S and CO2, and discusses the critical role of hierarchical pore structures in enhancing reaction kinetics. Finally, prospects for 3DOM catalysts in industrial gas purification and carbon neutrality applications are outlined.

Key words: colloidal crystals, 3DOM, catalyst, catalysis, gas purification, adsorption, hierarchical pore structure, mass transfer

中图分类号: