化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 246-257.DOI: 10.11949/0438-1157.20250079

• 流体力学与传递现象 • 上一篇    

泥水盾构仓体内射流对泥浆输送特性影响研究

孙九春1,2(), 桑运龙1,2, 王海涛1,2(), 贾浩3(), 朱艳4   

  1. 1.上海腾创数智工程技术咨询有限责任公司,上海 201306
    2.腾达建设集团股份有限公司,上海 200122
    3.浙江理工大学全省复杂流动与流体工程装备重点实验室,浙江 杭州 310018
    4.盐城市公路事业发展中心,江苏 盐城 224055
  • 收稿日期:2025-01-19 修回日期:2025-03-09 出版日期:2025-06-25 发布日期:2025-06-26
  • 通讯作者: 王海涛,贾浩
  • 作者简介:孙九春(1976—),男,博士,教授级高级工程师,sjczy999@163.com
  • 基金资助:
    浙江省重点研发项目(2022C01168);国家自然科学基金项目(52206056)

Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines

Jiuchun SUN1,2(), Yunlong SANG1,2, Haitao WANG1,2(), Hao JIA3(), Yan ZHU4   

  1. 1.Shanghai Tengchuang Shuzhi Engineering Technology Consulting Co. , Ltd. , Shanghai 201306, China
    2.Tengda Construction Co. , Ltd. , Shanghai 200122, China
    3.Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
    4.Yancheng Highway Development Center, Yancheng 224055, Jiangsu, China
  • Received:2025-01-19 Revised:2025-03-09 Online:2025-06-25 Published:2025-06-26
  • Contact: Haitao WANG, Hao JIA

摘要:

基于计算流体动力学(CFD)方法,建立了超大直径泥水盾构仓体内泥浆冲刷和输送模型,提出了一种适用于气垫仓的临界不淤流速理论计算方法,并研究了格栅前和泥浆门后射流在不同角度时气垫仓内部流场运动特性。泥浆门后射流角度α=45°时流场优化效果最佳,可显著提高格栅截面平均速度,并促进颗粒进入格栅。不同地质条件下临界不淤流速范围为1.68~1.80 m/s,大粒径颗粒占比越高,临界不淤流速越大;α=45°及α=60°时气垫仓下部中间区域流速高于临界值,可有效降低岩屑沉积风险,并增强颗粒通过率。格栅前射流角度β=30°时,射流形成的湍动能扰动对防止易絮凝细颗粒的沉积具有显著作用。研究结果可为提高仓内岩土颗粒运输效率以及解决渣土滞排等问题提供参考。

关键词: 超大直径泥水平衡盾构, 冲刷角度, 渣土滞排, 临界不淤流速, 计算流体力学, 数值模拟, 湍流

Abstract:

A numerical simulation model for slurry transport within the chamber of an ultra-large-diameter slurry shield tunneling machine is established based on computational fluid dynamics (CFD) methods. A theoretical approach for calculating the critical non-silting velocity in the air cushion chamber is proposed, and the internal flow field characteristics under different jet nozzle angles, both in front of the grille and behind the slurry gate, are analyzed. When the jet angle behind the slurry gate is set to α = 45°, the flow field is optimized, leading to an increase in the average velocity across the grille section, enhancing the slurry jet's transport capacity for soil agglomerates, and promoting particle entry into the grille. The critical non-silting velocity is found to range from 1.68 m/s to 1.80 m/s, with higher proportions of large particles requiring greater velocities. At α = 45° and α = 60°, the flow velocity in the lower central chamber exceeds the critical value, effectively reducing the risk of debris deposition. Moreover, the overlap of jet turbulence diffusion zones at the grille enhances particle transport efficiency. When the jet angle in front of the grille is set to β = 30°, turbulence-induced disturbances effectively prevent the deposition of easily flocculated fine particles. These findings provide valuable insights for improving the transport efficiency of soil and rock particles within the chamber and mitigating sediment blockage in the air cushion chamber.

Key words: extra-large-diameter slurry shield, jet angle, delayed mucking, critical non-silting velocity, CFD, numerical simulation, turbulent flow

中图分类号: