化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1040-1049.DOI: 10.11949/0438-1157.20241013
禹言芳1(), 张埔瑜1, 孟辉波2(
), 孙雯1, 李雯1, 乔文龙1, 张梦琼1
收稿日期:
2024-09-10
修回日期:
2024-10-13
出版日期:
2025-03-25
发布日期:
2025-03-28
通讯作者:
孟辉波
作者简介:
禹言芳(1979—),女,博士,副教授,taroyy@163.com
基金资助:
Yanfang YU1(), Puyu ZHANG1, Huibo MENG2(
), Wen SUN1, Wen LI1, Wenlong QIAO1, Mengqiong ZHANG1
Received:
2024-09-10
Revised:
2024-10-13
Online:
2025-03-25
Published:
2025-03-28
Contact:
Huibo MENG
摘要:
基于绿色仿生学理念,依据海螺的外形特点设计了一种三旋海螺型静态混合元件。在进口空管段Ret=2640~11450的恒热通量传热实验中,采用压降(Δp)、范宁摩擦因数(f)和Z因子评价了Kenics型静态混合器(KSM)、正向三旋海螺型静态混合器(three-twisted conch static mixer,TCSM)和反向三旋海螺型静态混合器(reverse three-twisted conch static mixer,RTCSM)的能耗。基于Nusselt数(Nu)、对流传热系数(h)和综合传热系数(PEC)评价三种混合器的强化传热特性。结果表明,KSM、TCSM和RTCSM的h与空管相比分别提高22.15%~40.53%、10.83%~27.34%和33.29%~50.30%,RTCSM的PEC分别比TCSM和KSM增加9.41%~28.99%和4.94%~13.29%。此外,通过功率谱密度(PSD)和标度指数(ϕ)表征不同混合器进出口压力信号的湍流脉动特征,发现RTCSM能够产生更多的小尺度涡进而强化传热。出口处RTCSM的最大Lyapunov指数(λ)大于TCSM和KSM的λ,表明流体流经RTCSM后呈现更强的混沌特性。
中图分类号:
禹言芳, 张埔瑜, 孟辉波, 孙雯, 李雯, 乔文龙, 张梦琼. 仿生海螺型静态混合器传热与湍流脉动特性实验研究[J]. 化工学报, 2025, 76(3): 1040-1049.
Yanfang YU, Puyu ZHANG, Huibo MENG, Wen SUN, Wen LI, Wenlong QIAO, Mengqiong ZHANG. Experimental study on heat transfer and turbulent fluctuation characteristics of biomimetic conch static mixer[J]. CIESC Journal, 2025, 76(3): 1040-1049.
1 | Madeddu C, Errico M, Baratti R. Process analysis for the carbon dioxide chemical absorption-regeneration system[J]. Applied Energy, 2018, 215: 532-542. |
2 | Vooradi R, Bertran M O, Frauzem R, et al. Sustainable chemical processing and energy-carbon dioxide management: review of challenges and opportunities[J]. Chemical Engineering Research and Design, 2018, 131: 440-464. |
3 | Ishak S A, Hashim H. Effect of mitigation technologies on the total cost and carbon dioxide emissions of a cement plant under multi-objective mixed linear programming optimisation[J]. Chemical Engineering Research and Design, 2022, 186: 326-349. |
4 | Xu W H, Wang W, Zhang X X, et al. Study on the adsorption rate of anion exchange absorbents for capturing carbon dioxide in ambient air[J]. Chemical Engineering Research and Design, 2024, 201: 503-509. |
5 | Xu G W, Bai D R, Xu C M, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2023, 10(9): nwac217. |
6 | 初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444. |
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro-/nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444. | |
7 | Chabanon E, Sheibat-Othman N, Mdere O, et al. Drop size distribution monitoring of oil-in-water emulsions in SMX+static mixers: effect of operating and geometrical conditions[J]. International Journal of Multiphase Flow, 2017, 92: 61-69. |
8 | 任新林, 梅毅, 冯梦黎, 等. SK静态混合器对工业磷酸脱砷的过程强化研究[J]. 化工学报, 2018, 69(S2): 218-225. |
Ren X L, Mei Y, Feng M L, et al. Process intensification of removing arsenic from industrial phosphoric acid by Keltics static mixer[J]. CIESC Journal, 2018, 69(S2): 218-225. | |
9 | Hara S, Maxson A J, Kawaguchi Y. Exergy transfer characteristics analysis of turbulent heat transfer enhancement in surfactant solution[J]. International Journal of Heat and Mass Transfer, 2019, 130: 545-554. |
10 | 禹言芳, 于恒磊, 孟辉波, 等. Kenics型静态混合器强化NaOH溶液吸收CO2的实验分析[J]. 过程工程学报, 2024, 24(10): 1149-1157. |
Yu Y F, Yu H L, Meng H B, et al. Experimental analysis of enhanced absorption of CO2 by NaOH solution in Kenics static mixer[J]. The Chinese Journal of Process Engineering, 2024, 24(10): 1149-1157. | |
11 | Valdés J P, Kahouadji L, Matar O K. Current advances in liquid-liquid mixing in static mixers: a review[J]. Chemical Engineering Research and Design, 2022, 177: 694-731. |
12 | Ghanem A, Lemenand T, Della Valle D, et al. Static mixers: mechanisms, applications, and characterization methods—a review[J]. Chemical Engineering Research and Design, 2014, 92(2): 205-228. |
13 | Yu Y F, Yu H L, Meng H B, et al. Experimental study on the ability of static mixer with four twisted leaves to enhance the absorption of carbon dioxide in alkaline solution[J]. Fuel, 2024, 375: 132443. |
14 | Tajima H, Yamasaki A, Kiyono F. Effects of mixing functions of static mixers on the formation of CO2 hydrate from the two-phase flow of liquid CO2 and water[J]. Energy & Fuels, 2005, 19(6): 2364-2370. |
15 | Jiang X R, Yang N, Wang R J. Effect of aspect ratio on the mixing performance in the kenics static mixer[J]. Processes, 2021, 9(3): 464. |
16 | Creyssels M, Prigent S, Zhou Y X, et al. Laminar heat transfer in the “MLLM” static mixer[J]. International Journal of Heat and Mass Transfer, 2015, 81: 774-783. |
17 | Zhao S, Zhang X, Wang H, et al. Numerical simulation on enhanced heat transfer and flow characteristics in direct-contact heat exchanger: a novel kenics static mixer[J]. International Journal of Energy Research, 2023, 2023(1): 4959962. |
18 | 禹言芳, 丁鹏程, 孟辉波, 等. 非牛顿流体在叶片式静态混合器中的传热强化特性[J]. 化工进展, 2024, 43(3): 1145-1156. |
Yu Y F, Ding P C, Meng H B, et al. Heat transfer enhancement of non-Newtonian fluid in the blade-type static mixer[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1145-1156. | |
19 | 孟辉波, 蒙彤, 禹言芳, 等. Ross LPD型静态混合器内湍流传热与混合强化特性[J]. 化工学报, 2022, 73(8): 3541-3552. |
Meng H B, Meng T, Yu Y F, et al. Turbulent heat transfer and mixing enhancement characteristics in Ross LPD static mixer[J]. CIESC Journal, 2022, 73(8): 3541-3552. | |
20 | Nyande B W, Mathew Thomas K, Lakerveld R. CFD analysis of a kenics static mixer with a low pressure drop under laminar flow conditions[J]. Industrial & Engineering Chemistry Research, 2021, 60(14): 5264-5277. |
21 | Guo J F, Xu M T, Cheng L. Numerical investigations of circular tube fitted with helical screw-tape inserts from the viewpoint of field synergy principle[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(4): 410-417. |
22 | 张静, 康铁鑫, 龚斌, 等. 双扭旋叶片组合形式对管内湍流换热性能的影响[J]. 化工学报, 2011, 62(S2): 52-60. |
Zhang J, Kang T X, Gong B, et al. Effect of combination method of double-twisted blades on turbulent convective heat transfer[J]. CIESC Journal, 2011, 62(S2): 52-60. | |
23 | Habchi C, Azizi F. Heat transfer and turbulent mixing characterization in screen-type static mixers[J]. International Journal of Thermal Sciences, 2018, 134: 208-215. |
24 | Pujari A R, Kumar S, Sow P K. Fluid flow simulation on a Turritella-seashell-like geometry demonstrating its ability as static mixer for inline mixing[J]. Chemical Engineering Science, 2022, 262: 118031. |
25 | Yu Y F, Li D A, Meng H B, et al. Enhancement study of turbulent heat transfer performance of nanofluids in the clover static mixer[J]. International Journal of Thermal Sciences, 2024, 198: 108900. |
26 | Meng H B, Meng T, Yu Y F, et al. Experimental and numerical investigation of turbulent flow and heat transfer characteristics in the Komax static mixer[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123006. |
27 | Liu H L, Li H, He Y L, et al. Heat transfer and flow characteristics in a circular tube fitted with rectangular winglet vortex generators[J]. International Journal of Heat and Mass Transfer, 2018, 126: 989-1006. |
28 | Habchi C, Lemenand T, Della Valle D, et al. Entropy production and field synergy principle in turbulent vortical flows[J]. International Journal of Thermal Sciences, 2011, 50(12): 2365-2376. |
29 | Fu Q, Xiao C, Huang Y, et al. Numerical study of flow and heat transfer characteristics of microalgae slurry in a solar-driven hydrothermal pretreatment system[J]. Applied Thermal Engineering, 2020, 164: 114476. |
30 | Habchi C, Russeil S, Bougeard D, et al. Enhancing heat transfer in vortex generator-type multifunctional heat exchangers[J]. Applied Thermal Engineering, 2012, 38: 14-25. |
31 | Webb R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design[J]. International Journal of Heat and Mass Transfer, 1981, 24(4): 715-726. |
32 | 张建伟, 许仲荟, 董鑫, 等. 双组分层撞击流反应器浓度场混沌分析[J]. 过程工程学报, 2022, 22(6): 802-810. |
Zhang J W, Xu Z H, Dong X, et al. Chaos analysis of concentration field in two-component layered impinging stream reactor[J]. The Chinese Journal of Process Engineering, 2022, 22(6): 802-810. | |
33 | Meng T, Wang Y, Wang S S, et al. Exploration of multishafts stirred reactors: an investigation on experiments and large eddy simulations for turbulent chaos and mixing characteristics[J]. Industrial & Engineering Chemistry Research, 2024, 63(5): 2441-2456. |
34 | 王一颉. 多元混沌时间序列相关性分析及预测方法研究[D]. 大连: 大连理工大学, 2008. |
Wang Y J. Research on analysis of correlation and prediction modeling for multivariate chaotic time series[D]. Dalian: Dalian University of Technology, 2008. | |
35 | De Paula A V, Möller S V. On the chaotic nature of bistable flows[J]. Experimental Thermal and Fluid Science, 2018, 94: 172-191. |
36 | Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D: Nonlinear Phenomena, 1993, 65(1/2): 117-134. |
37 | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
38 | Zhang W H, Li X G. Origin of pressure fluctuations in an internal-loop airlift reactor and its application in flow regime detection[J]. Chemical Engineering Science, 2009, 64(5): 1009-1018. |
39 | Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 434(1890): 9-13. |
40 | Djenidi L, Antonia R A, Tang S L. Mathematical constraints on the scaling exponents in the inertial range of fluid turbulence[J]. Physics of Fluids, 2021, 33(3): 031703. |
41 | 姚天亮, 刘海峰, 许建良, 等. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动[J]. 物理学报, 2012, 61(23): 342-348. |
Yao T L, Liu H F, Xu J L, et al. The largest Lyapunov exponent and the turbulent fluctuation of the time series from air turbulent jets[J]. Acta Physica Sinica, 2012, 61(23): 342-348. |
[1] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
[2] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
[3] | 孙芹, 周国庆, 翟万领, 高山, 罗倩倩, 屈健. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
[4] | 张亦鸣, 杨鹏, 纪献兵, 任纪星, 张磊, 苗政. 多回路平板式环路热管热性能[J]. 化工学报, 2025, 76(3): 1018-1028. |
[5] | 李科, 忻碧平, 文键. 液氢储罐中耦合蒸气冷却屏的连续变密度多层绝热的序列二次规划优化[J]. 化工学报, 2025, 76(3): 985-994. |
[6] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
[7] | 张泽雨, 王平, 戴凯论, 钱伟佳, Roy Subhajit, 帅瑞洋, Ferrante Antonio. 轴向双级氨/甲烷湍流预混火焰燃烧特性及NO生成[J]. 化工学报, 2025, 76(2): 835-845. |
[8] | 陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140. |
[9] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[10] | 李海东, 张奇琪, 杨路, AKRAM Naeem, 常承林, 莫文龙, 申威峰. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
[11] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[12] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[13] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[14] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[15] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 84
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||