化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 343-350.DOI: 10.11949/0438-1157.20241311
• 能源和环境工程 • 上一篇
收稿日期:2024-11-15
修回日期:2024-11-20
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
刘晔
作者简介:朱腾飞(2001—),男,硕士研究生,zhutengfei813@stu.xjtu.edu.cn
基金资助:Received:2024-11-15
Revised:2024-11-20
Online:2025-06-25
Published:2025-06-26
Contact:
Ye LIU
摘要:
随着《<蒙特利尔议定书>基加利修正案》正式生效,R134a因其高全球变暖潜值(global warming potential,GWP)在未来汽车空调中使用受限。为研究低GWP制冷剂应用的可行性,首先基于热力学分析方法对R1234yf、R1234ze(E)、R290在4种实际汽车空调工况下进行性能分析与多因素评估,并与R134a进行对比;其次,建立续航模型,研究不同制冷剂在冬季不同环境温度下的续航性能。结果表明:与R134a相比,R1234yf具有相近的单位容积制冷/制热量,压缩机排量适配性强;R1234ze(E)和R134a的COP及制冷/制热效果相当;在冬季极寒工况下,R290表现出显著的性能优势,其COPh和qcv分别比R134a高2.3%、57.3%,此外,在热泵运行工况下,R290的续航里程衰减较R134a有所减缓。本研究为汽车空调领域高效、环保制冷剂替代应用提供了重要参考。
中图分类号:
朱腾飞, 刘晔. 低GWP制冷剂在新能源汽车空调应用性能分析[J]. 化工学报, 2025, 76(S1): 343-350.
Tengfei ZHU, Ye LIU. Performance analysis of low GWP refrigerant used in new energy vehicle air conditioning[J]. CIESC Journal, 2025, 76(S1): 343-350.
| 名称 | 分子量 | 标准沸点/℃ | 临界温度/℃ | 临界压力/MPa | ODP | GWP | 安全等级 |
|---|---|---|---|---|---|---|---|
| R134a | 102.0 | -26.0 | 101.1 | 4.059 | 0 | 1430 | A1 |
| R1234yf | 114.0 | -29.0 | 95.0 | 3.382 | 0 | 1 | A2L |
| R123ze(E) | 114.0 | 9.75 | 153.7 | 3.530 | 0 | <10 | A2L |
| R290 | 44.1 | -42.07 | 96.8 | 4.254 | 0 | 趋近0 | A3 |
表1 4种制冷剂热力学物性参数
Table 1 Four kinds of refrigerant thermodynamic physical property parameters
| 名称 | 分子量 | 标准沸点/℃ | 临界温度/℃ | 临界压力/MPa | ODP | GWP | 安全等级 |
|---|---|---|---|---|---|---|---|
| R134a | 102.0 | -26.0 | 101.1 | 4.059 | 0 | 1430 | A1 |
| R1234yf | 114.0 | -29.0 | 95.0 | 3.382 | 0 | 1 | A2L |
| R123ze(E) | 114.0 | 9.75 | 153.7 | 3.530 | 0 | <10 | A2L |
| R290 | 44.1 | -42.07 | 96.8 | 4.254 | 0 | 趋近0 | A3 |
| 热管理系统 | 行驶速度/(km/h) | 夏季耗电量/kW | 冬季耗电量/kW | 电池容量/(kW·h) | 综合里程/km | 百公里电耗/(kW·h) |
|---|---|---|---|---|---|---|
| 空调制冷+PTC制热 | 30 | 6.68 | 9.60 | 42.0 | 305 | 13.6 |
表2 比亚迪-元EV360性能参数
Table 2 Performance parameters of BYD-Yuan EV360
| 热管理系统 | 行驶速度/(km/h) | 夏季耗电量/kW | 冬季耗电量/kW | 电池容量/(kW·h) | 综合里程/km | 百公里电耗/(kW·h) |
|---|---|---|---|---|---|---|
| 空调制冷+PTC制热 | 30 | 6.68 | 9.60 | 42.0 | 305 | 13.6 |
| 项目 | 夏季额定 | 夏季高温 | 冬季额定 | 冬季极寒 |
|---|---|---|---|---|
| 乘员舱外环境 | 干球温度35℃ | 干球温度45℃ | 干球温度0℃ | 干球温度-20℃ |
| 乘员舱内环境 | 干/湿球温度27℃/19.5℃ | 干/湿球温度32.5℃/26℃ | 干球温度20℃,相对湿度30% | |
表3 乘员舱内/外工作参数[34]
Table 3 Inside/outside operating parameters of cockpit[34]
| 项目 | 夏季额定 | 夏季高温 | 冬季额定 | 冬季极寒 |
|---|---|---|---|---|
| 乘员舱外环境 | 干球温度35℃ | 干球温度45℃ | 干球温度0℃ | 干球温度-20℃ |
| 乘员舱内环境 | 干/湿球温度27℃/19.5℃ | 干/湿球温度32.5℃/26℃ | 干球温度20℃,相对湿度30% | |
| 工况 | 环境 温度/℃ | 蒸发 温度/℃ | 冷凝 温度/℃ | 过热度/℃ | 过冷度/℃ |
|---|---|---|---|---|---|
| 夏季额定制冷工况 | 35 | -1 | 50 | 6 | 5 |
| 夏季高温制冷工况 | 45 | 10 | 63 | 6 | 5 |
| 冬季额定制热工况 | 0 | -5 | 55 | 6 | 5 |
| 冬季极寒制热工况 | -20 | -25 | 35 | 6 | 5 |
表4 实际运行工况参数
Table 4 Parameters of actual operating
| 工况 | 环境 温度/℃ | 蒸发 温度/℃ | 冷凝 温度/℃ | 过热度/℃ | 过冷度/℃ |
|---|---|---|---|---|---|
| 夏季额定制冷工况 | 35 | -1 | 50 | 6 | 5 |
| 夏季高温制冷工况 | 45 | 10 | 63 | 6 | 5 |
| 冬季额定制热工况 | 0 | -5 | 55 | 6 | 5 |
| 冬季极寒制热工况 | -20 | -25 | 35 | 6 | 5 |
| 1 | 任兆龙, 管燕, 殷翔, 等. 新PFASs限制法案提案下汽车空调替代制冷剂的对比与展望[J]. 制冷学报, 2024, 45(4): 1-13. |
| Ren Z L, Guan Y, Yin X, et al. Comparison and prospect of alternative refrigerants for MAC based on new PFASs restriction regulation proposal[J]. Journal of Refrigeration, 2024, 45(4): 1-13. | |
| 2 | 宗硕, 殷翔, 黄龙飞, 等. 新能源车用CO2空调系统泄漏特性仿真研究[J]. 制冷学报, 2023, 44(6): 22-28. |
| Zong S, Yin X, Huang L F, et al. Simulation research on leakage of vehicle CO2 air conditioning system[J]. Journal of Refrigeration, 2023, 44(6): 22-28. | |
| 3 | 王佳, 孟庆瑶, 黎宇科, 等. 我国汽车空调替代HFCs制冷剂面临的问题[J]. 汽车与配件, 2023(11): 68-69. |
| Wang J, Meng Q Y, Li Y K, et al. Problems faced by automobile air conditioners replacing HFCs refrigerants in China[J]. Automobile & Parts, 2023(11): 68-69. | |
| 4 | 张振宇, 王丹东, 陈江平, 等. 带喷射器的CO2汽车空调系统性能研究[J]. 制冷技术, 2020, 40(5): 33-40. |
| Zhang Z Y, Wang D D, Chen J P, et al. Experimental investigation on CO2 automotive air-conditioning system with ejector[J]. Chinese Journal of Refrigeration Technology, 2020, 40(5): 33-40. | |
| 5 | Coleman J W, Garimella S. Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a[J]. International Journal of Refrigeration, 2003, 26(1): 117-128. |
| 6 | United Nations Environment Programme. The Kigali amendment to the Montreal protocol on substances that deplete the ozone layer[EB/OL]. . |
| 7 | Wang H M, Ji Z Y, Wang C W, et al. Experimental study of propane heat pump system with secondary loop and vapor injection for electric vehicle application in cold climate[J]. Applied Thermal Engineering, 2022, 217: 119196. |
| 8 | Yang Y C, Shao W C, Yang T Y, et al. Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions[J]. Science China Technological Sciences, 2024, 67: 3673-3681. |
| 9 | 肖学智, 周晓芳, 徐浩阳, 等. 低GWP制冷剂研究现状综述[J]. 制冷技术, 2014, 34(6): 37-42. |
| Xiao X Z, Zhou X F, Xu H Y, et al. An overview on the research progress of low GWP alternatives to HCFCs[J]. Chinese Journal of Refrigeration Technology, 2014, 34(6): 37-42. | |
| 10 | Kuwar Y V. Performance evaluation of ecofriendly R1234ze(E) refrigerant in an automotive air conditioning system[J]. Heat Transfer, 2024, 53(2): 472-494. |
| 11 | 刘雨声, 李万勇, 张立, 等. 采用R1234yf制冷剂的汽车超低温强化补气热泵空调性能[J]. 上海交通大学学报, 2020, 54(10): 1108-1116. |
| Liu Y S, Li W Y, Zhang L, et al. Performance of automotive ultra-low temperature economized vapor injection heat pump air conditioning using R1234yf refrigerant[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1108-1116. | |
| 12 | Li W Y, Liu R, Liu Y S, et al. Performance evaluation of R1234yf heat pump system for an electric vehicle in cold climate[J]. International Journal of Refrigeration, 2020, 115: 117-125. |
| 13 | Colombo L P M, Lucchini A, Molinaroli L. Experimental analysis of the use of R1234yf and R1234ze(E) as drop-in alternatives of R134a in a water-to-water heat pump[J]. International Journal of Refrigeration, 2020, 115: 18-27. |
| 14 | Zou H M, Huang G Y, Shao S Q, et al. Experimental study on heating performance of an R1234yf heat pump system for electric cars[J]. Energy Procedia, 2017, 142: 1015-1021. |
| 15 | Zong S, Yin X, Miao T Y, et al. Experimental investigation on the cooling performance of direct and secondary loop CO2 air conditioning systems for electric vehicles[J]. International Journal of Refrigeration, 2023, 152: 376-386. |
| 16 | Zong S, Wang W Y, Yin X, et al. Evaluation of energy-saving potential and cabin thermal comfort for automobile CO2 heat pump[J]. Applied Thermal Engineering, 2023, 228: 120339. |
| 17 | Wang L L, He Y, Ren J B, et al. Simulation of diffusion of combustible refrigerants R1234yf and R290 leakage in automotive air conditioning[J]. International Journal of Refrigeration, 2024, 168: 326-333. |
| 18 | Li A R, Yu B B, Zhang Y J, et al. The emission reduction potential and cost-effectiveness of low-GWP refrigerants in electric vehicle air conditionings[J]. Carbon Footprints, 2024, 3(2): 6. |
| 19 | Wang D D, Yu B B, Hu J C, et al. Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate[J]. International Journal of Refrigeration, 2018, 85: 27-41. |
| 20 | 赵洋, 杨双, 蔡宁, 等. R290房间空调器安全与性能研究综述[J]. 制冷技术, 2023, 43(1): 81-86. |
| Zhao Y, Yang S, Cai N, et al. Review of research on safety and performance of R290 room air conditioner[J]. Chinese Journal of Refrigeration Technology, 2023, 43(1): 81-86. | |
| 21 | Vaghela J K. Comparative evaluation of an automobile air - conditioning system using R134a and its alternative refrigerants[J]. Energy Procedia, 2017, 109: 153-160. |
| 22 | 刘嘉瑞, 鱼剑琳, 晏刚. -86℃超低温医疗冷柜碳氢混合工质替代试验研究[J]. 流体机械, 2025, 53(1): 1-9. |
| Liu J R, Yu J L, Yan G. Experimental study on substitution of hydrocarbon mixed working medium in -86℃ ultra-low temperature medical freezer[J]. Fluid Machinery, 2024, 53(1): 1-9. | |
| 23 | Qin Y B, Li N X, Zhang H, et al. A thermodynamic analysis of the Linde-Hampson cycle using low-GWP R1234yf-blends[J]. Case Studies in Thermal Engineering, 2023, 49: 103358. |
| 24 | Fukuda S, Kondou C, Takata N, et al. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps[J]. International Journal of Refrigeration, 2014, 40: 161-173. |
| 25 | 周昉, 刘剑, 张小松. 基于多参数评估原则筛选高温热泵用三元非共沸混合工质[J]. 化工学报, 2023, 74(11): 4487-4500. |
| Zhou F, Liu J, Zhang X S. Selection of ternary zeotropic mixtures for high-temperature heat pumps on multiparameter evaluation principles[J]. CIESC Journal, 2023, 74(11): 4487-4500. | |
| 26 | Liu Y, Liu J R, Yu J L. Theoretical analysis on a novel two-stage compression transcritical CO2 dual-evaporator refrigeration cycle with an ejector[J]. International Journal of Refrigeration, 2020, 119: 268-275. |
| 27 | Liu J R, Yu J L, Yan G. Experimental study on performance characteristics of a -70℃ ultra-low temperature medical freezer with mixed hydrocarbon refrigerant[J]. Energy, 2024, 307: 132596. |
| 28 | Lu Y, Bai T, Yu J L. Experimental investigation on a -40℃ low-temperature freezer using ejector-expansion refrigeration system[J]. International Journal of Refrigeration, 2020, 118: 230-237. |
| 29 | Bai T, Yan G, Yu J L. Experimental investigation of an ejector-enhanced auto-cascade refrigeration system[J]. Applied Thermal Engineering, 2018, 129: 792-801. |
| 30 | Jing S Q, Chen Q, Zhou Y M, et al. Thermodynamic analysis of a modified booster-assisted ejector heat pump cycle with dual condensers[J]. Applied Thermal Engineering, 2023, 235: 121351. |
| 31 | Jing S Q, Chen Q, Yu J L. Analysis of an ejector-assisted flash tank vapor injection heat pump cycle with dual evaporators for dryer application[J]. Energy, 2024, 286: 129531. |
| 32 | Bai T, Yan G, Yu J L. Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants[J]. Energy, 2019, 179: 850-862. |
| 33 | Li Y X, Yu J L. Thermodynamic analysis of a modified ejector-expansion refrigeration cycle with hot vapor bypass[J]. Journal of Thermal Science, 2019, 28(4): 695-704. |
| 34 | 黄广燕. 基于环保工质R290的电动汽车热泵空调系统研究[D]. 北京: 中国科学院大学, 2019. |
| Huang G Y. Investigation on heat pump system for electric vehicles based on environment-friendly refrigerant R290[D]. Beijing: University of Chinese Academy of Sciences, 2019. |
| [1] | 李银龙, 刘国强, 晏刚. 分馏与闪蒸分离耦合自复叠制冷循环性能分析[J]. 化工学报, 2025, 76(S1): 26-35. |
| [2] | 苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151. |
| [3] | 臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25. |
| [4] | 刘淑丽, 周文豪, 张少良, 沈永亮. 太阳能直接吸收相变集-蓄热器的放热特性研究[J]. 化工学报, 2025, 76(4): 1722-1730. |
| [5] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [6] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
| [7] | 卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
| [8] | 杨艳, 郭亚丽, 于硕文, 潘泊年, 沈胜强. 液氨喷射泵热力性能的计算分析[J]. 化工学报, 2024, 75(6): 2134-2142. |
| [9] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
| [10] | 晁惠雨, 白振敏, 侯汉青, 田立志, 李洪, 房晓权, 石晓华. 液相法合成三聚氰酸体系热力学分析[J]. 化工学报, 2024, 75(6): 2157-2165. |
| [11] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
| [12] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
| [13] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
| [14] | 陈好奇, 史博会, 彭琪, 康琦, 宋尚飞, 姚海元, 陈海宏, 吴海浩, 宫敬. 基于稳定性分析的含酸/醇烃水体系相平衡计算[J]. 化工学报, 2024, 75(3): 789-800. |
| [15] | 周辛梓, 李增辉, 孟现阳, 吴江涛. 低温下高纯空气黏度实验研究[J]. 化工学报, 2024, 75(3): 782-788. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号
