化工学报 ›› 2024, Vol. 75 ›› Issue (9): 3122-3132.DOI: 10.11949/0438-1157.20240332
陈巨辉1(), 苏潼1, 李丹1, 陈立伟1, 吕文生2, 孟凡奇2
收稿日期:
2024-03-25
修回日期:
2024-05-16
出版日期:
2024-09-25
发布日期:
2024-10-10
通讯作者:
陈巨辉
作者简介:
陈巨辉(1982—),女,博士,教授,chenjuhui@hrbust.edu.cn
基金资助:
Juhui CHEN1(), Tong SU1, Dan LI1, Liwei CHEN1, Wensheng LYU2, Fanqi MENG2
Received:
2024-03-25
Revised:
2024-05-16
Online:
2024-09-25
Published:
2024-10-10
Contact:
Juhui CHEN
摘要:
基于有限体积(FVM)离散方法和动网格技术,模拟三维矩形微通道内的翅形扰流片的主动扰流换热情况。模拟条件为层流Reynolds数50~250,扰流片的运动频率(f)10~50 Hz。结果表明,不同运动频率下的Nusselt数、摩阻系数(fr)及综合评价因子(PEC)均在一定范围内呈现类正弦变化,其周期与扰流片运动周期相同。在Re=50、f=10~50工况下,扰流片作用下的微通道PEC为0.75~1.52,并随频率的增加而上升。特别是在低频范围内,PEC表现出一定的单调性。通过引入翅形扰流片,微通道的传热效率得到了显著的提高,相较于光滑矩形微通道(PEC=1),在Re=50、f=10 Hz工况下PEC提高了5%,在Re=50、f=50 Hz的条件下PEC提高了30%。
中图分类号:
陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132.
Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers[J]. CIESC Journal, 2024, 75(9): 3122-3132.
网格数/104 | Nu | 偏差/% |
---|---|---|
62 | 3.01 | 35 |
86 | 3.93 | 15.7 |
108 | 4.44 | 4.72 |
136 | 4.64 | 0.43 |
151 | 4.66 | 0 |
表1 网格无关性验证
Table 1 Mesh independence validation
网格数/104 | Nu | 偏差/% |
---|---|---|
62 | 3.01 | 35 |
86 | 3.93 | 15.7 |
108 | 4.44 | 4.72 |
136 | 4.64 | 0.43 |
151 | 4.66 | 0 |
1 | 齐聪, 李可傲, 李春阳. 微肋结构对纳米流体绕流圆柱热性能的影响[J]. 化工学报, 2021, 72(4): 2006-2017. |
Qi C, Li K A, Li C Y. Influence of micro-rib structures on thermal performance of nanofluids flowing around circular cylinders[J]. CIESC Journal, 2021, 72(4): 2006-2017. | |
2 | 李佳旭, 怀英, 刘婷婷, 等. 缠绕管式换热器全模型研究[J]. 化工学报, 2023, 74(12): 4820-4828. |
Li J X, Huai Y, Liu T T, et al. Study on the full model of spiral wound heat exchanger[J]. CIESC Journal, 2023, 74(12): 4820-4828. | |
3 | Sun L, Li J, Xu H, et al. Numerical study on heat transfer and flow characteristics of novel microchannel heat sinks[J]. International Journal of Thermal Sciences, 2022, 176: 107535. |
4 | Grinham J, Hancock M J, Kumar K, et al. Bioinspired designand optimization for thin film wearable and building cooling systems[J]. Bioinspiration & Biomimetics, 2022, 17(1): 015003. |
5 | Kumar V, Pathak M, Khan M K. Heat transfer characteristics of a closed-loop two-phase thermosyphon system with a structured heating surface[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(1): 011013. |
6 | He R D, Wang Z M, Dong F. Influence of heat-transfer surface morphology on boiling-heat-transfer performance[J]. Heat and Mass Transfer, 2022, 58(8): 1303-1318. |
7 | Zhang Y, Pan M Q. Simulation analysis of the heat transfer performance of an N-type microchannel heat exchanger[J]. Chemical Engineering & Technology, 2020, 43(10): 1930-1938. |
8 | 谷家扬, 陈代飞, 魏世松, 等. 流道截面形状对超临界甲烷在微通道中流动换热特性影响研究[J]. 舰船科学技术, 2023, 45(13): 53-58. |
Gu J Y, Chen D F, Wei S S, et al. Flow channel cross section shape for supercritical methane in microchannels. Study on the influence of flow heat transfer characteristics[J]. Ship Science and Technology, 2023, 45(13): 53-58. | |
9 | 王长亮, 田茂诚. 微小通道内低Reynolds数液-液两相流动与换热特性实验研究[J]. 化工学报, 2021, 72(3): 1322-1332. |
Wang C L, Tian M C. Experimental research on low Reynolds number liquid-liquid two-phase flow and heat transfer characteristics in micro channels[J]. CIESC Journal, 2021, 72(3): 1322-1332. | |
10 | 刘璐, 丁国良, 庄大伟, 等. 微通道换热器百叶窗翅片排水性能的CFD模拟[J]. 化工学报, 2021, 72(S1): 91-97. |
Liu L, Ding G L, Zhuang D W, et al. CFD simulation of water drainage performance of louver-typed microchannel heat exchanger[J]. CIESC Journal, 2021, 72(S1): 91-97. | |
11 | 余同谱. 微流控系统中被动与主动式强化换热模拟研究[D]. 马鞍山: 安徽工业大学, 2018. |
Yu T P. Simulation study of passive and active methods for heat transfer enhancement in microfluidic systems[D]. Maanshan: Anhui Universit of Technology, 2018. | |
12 | Liu G H, Xu J L, Yang Y P. Seed bubbles trigger boiling heat transfer in silicon microchannels[J]. Microfluidics and Nanofluidics, 2010, 8(3): 341-359. |
13 | 陈立伟. 翅形扰流片作用下的微通道流动与换热特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2023. |
Chen L W. Research on flow and heat transfer characteristics of microchannels under the action of fin-shaped spoilers[D]. Harbin: Harbin University of Science and Technology, 2023. | |
14 | 苏占科, 徐超, 姜小放, 等. 基于动网格的液压缸无杆腔节流缓冲数值模拟[J]. 液压气动与密封, 2022, 42(11): 25-29. |
Su Z K, Xu C, Jiang X F, et al. Numerical simulation of rodless cavity throttling buffer for hydraulic cylinder based on dynamic grid[J]. Hydraulics Pneumatics & Seals, 2022, 42(11): 25-29. | |
15 | 张宇鑫, 曹曙阳, 操金鑫. 自动网格体系在柱体绕流大涡模拟中的适用性评估[J]. 同济大学学报(自然科学版), 2023, 51(4): 542-550. |
Zhang Y X, Cao S Y, Cao J X. Assessment of applicability of auto-generated grid in large eddy simulation of flow around a cylinder[J]. Journal of Tongji University (Natural Science), 2023, 51(4): 542-550. | |
16 | 何晓晖, 孙宏才, 程健生, 等. 基于动网格的液压阀阀芯启闭中的液动力分析[J]. 解放军理工大学学报(自然科学版), 2011, 12(5): 491-495. |
He X H, Sun H C, Cheng J S, et al. Numerical analysis on flow force of moving ball valve with dynamic mesh[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2011, 12(5): 491-495. | |
17 | 冯亿坤, 苏玉民, 徐小军, 等. 基于CFD的仿生水动力学数值计算方法及其验证[J]. 船舶力学, 2024, 28(2): 204-219. |
Feng Y K, Su Y M, Xu X J, et al. Numerical simulation method and verification of bio-hydrodynamics based on CFD[J]. Journal of Ship Mechanics, 2024, 28(2): 204-219. | |
18 | 田建辉, 胡晨明. 高速弹体出水过程数值模拟[J]. 兵器装备工程学报, 2023, 44(12): 73-78, 176. |
Tian J H, Hu C M. Numerical simulation of high speed projectile discharge process[J]. Journal of Ordnance Equipment Engineering, 2023, 44(12): 73-78, 176. | |
19 | 常志荣, 黄松, 曹廷发, 等. 基于动网格的逆止阀关闭特性研究[J]. 阀门, 2023(6): 722-726. |
Chang Z R, Huang S, Cao T F, et al. Research on closing characteristics of check valve based on dynamic mesh[J]. Valve, 2023(6): 722-726. | |
20 | 陈真真, 陈洪强, 黄磊, 等. 分形微通道换热过程强化研究进展[J]. 工程科学学报, 2022, 44(11): 1966-1977. |
Chen Z Z, Chen H Q, Huang L, et al. Research progress on fractal microchannels for heat transfer process intensification[J]. Chinese Journal of Engineering, 2022, 44(11): 1966-1977. | |
21 | 冯玉祥. 梯形凸肋与凹腔微通道流动换热研究[D]. 哈尔滨: 哈尔滨工程大学, 2023. |
Feng Y X. Study on flow and heat transfer of trapezoidal convex ribs and concave microchannels[D]. Harbin: Harbin Engineering University, 2023. | |
22 | Wang B X, Peng X F. Experimental investigation on liquid forced-convection heat transfer through microchannels[J]. International Journal of Heat and Mass Transfer, 1994, 37(S1): 73-82. |
23 | 辛明道, 师晋生. 微矩形槽道内的受迫对流换热性能实验[J]. 重庆大学学报(自然科学版), 1994, 17(3): 117-122. |
Xin M D, Shi J S. Experiments on forced convective heat transfer performance in rectangular microchannels[J]. Journal of Chongqing University, 1994, 17(3): 117-122. | |
24 | Sikdar P, Datta A, Biswas N, et al. Identifying improved microchannel configuration with triangular cavities and different rib structures through evaluation of thermal performance and entropy generation number[J]. Physics of Fluids, 2020, 32(3): 036601. |
25 | 许海涛. 基于通道内扰流与滑移减阻的双层微通道热沉强化传热[D]. 北京: 华北电力大学, 2022. |
Xu H T. Enhanced heat transfer with double-layer microchannel heat sink based on intra-channel perturbation and slip drag reduction[D]. Beijing: North China Electric Power University, 2022. | |
26 | 李永吉. 横断扰流微通道流动及传热特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Li Y J. Study on the flow and heat transfer characteristics of the interrupted micro-channel heat sink with ribs[D]. Harbin: Harbin Institute of Technology, 2019. | |
27 | 穆金霞, 殷学锋. 微通道反应器在合成反应中的应用[J]. 化学进展, 2008, 20(1): 60-75. |
Mu J X, Yin X F. Application of microfluidic reactors on synthesis reactions[J]. Progress in Chemistry, 2008, 20(1): 60-75. | |
28 | Li H W, Hu Z, Meng K, et al. Study on the evolution characteristics of temperature and heat storage of the soil surrounding the tunnel with years[J]. Energy & Buildings, 2022, 257: 111804. |
29 | Qiu J C, Zhao Q, Lu M X, et al. Experimental study of flow boiling heat transfer and pressure drop in stepped oblique-finned microchannel heat sink[J]. Case Studies in Thermal Engineering, 2022, 30: 101745. |
30 | Chen P Z, Pan Z L. Heat transfer analysis of flat heat pipe with enhanced microchannel shape[J]. IEEE Access, 2021, 9: 120833-120843. |
31 | Zhu Q F, Jin Y Y, Chen J J, et al. Computational study of rib shape and configuration for heat transfer and fluid flow characteristics of microchannel heat sinks with fan-shaped cavities[J]. Applied Thermal Engineering, 2021, 195: 117171. |
32 | 季家东, 高润淼, 陈卫强, 等. 螺旋弹性管束换热器壳程振动强化传热研究[J]. 工程热物理学报, 2021, 42(10): 2692-2699. |
Ji J D, Gao R M, Chen W Q, et al. Study on shell-side vibration-enhanced heat transfer of helical elastic tube heat exchanger[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2692-2699. | |
33 | 赵珀, 李炎, 杜强, 等. 基于动网格与滑移网格技术的隧道列车活塞风计算对比[J]. 制冷与空调, 2021, 35(6): 797-802. |
Zhao P, Li Y, Du Q, et al. Comparison of tunnel piston wind calculation based on dynamic mesh and sliding mesh technology[J]. Refrigeration & Air Conditioning, 2021, 35(6): 797-802. | |
34 | 甘甜, 王伟, 赵耀华, 等.地铁活塞风Fluent动网格模型的建立与验证[J]. 建筑科学, 2011, 27(8): 75-81. |
Gan T, Wang W, Zhao Y H, et al. Establishment and validation of the subway piston wind model with dynamic mesh method[J]. Building Science, 2011, 27(8): 75-81. | |
35 | 王坤, 李雪斌, 杜标. T型槽干气密封数值模拟网格独立性分析[J]. 数码设计, 2017, 6(4): 66-69. |
Wang K, Li X B, Du B. Mesh independence analysis of numerical simulation in T-groove dry gas seal[J]. Peak Data Science, 2017, 6(4): 66-69. | |
36 | 邓成香, 宋鹏云. 螺旋槽干气密封数值模拟网格独立性分析[J]. 润滑与密封, 2016, 41(7): 86-90, 101. |
Deng C X, Song P Y. Mesh independence analysis of numerical simulation in spiral groove dry gas seal[J]. Lubrication Engineering, 2016, 41(7): 86-90, 101. | |
37 | Ebrahimi A, Rikhtegar F, Sabaghan A, et al. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids[J]. Energy, 2016, 101: 190-201. |
38 | 范凌灏. 矩形微通道内流动传热特性的数值模拟及结构优化[D]. 济南: 山东大学, 2020. |
Fan L H. Numerical analysis and structural optimization of flow and heat transfer characteristics in rectangular microchannels[D]. Jinan: Shandong University, 2020. | |
39 | Gharali K, Johnson D A. Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity[J]. Journal of Fluids and Structures, 2013, 42: 228-244. |
40 | Lee T, Gerontakos P. Investigation of flow over an oscillating airfoil[J]. Journal of Fluid Mechanics, 2004, 512: 313-341. |
[1] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[2] | 卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
[3] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[4] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[5] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[6] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[7] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[8] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[9] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[10] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[11] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[12] | 董可豪, 周敬之, 周峰, 陈海家, 淮秀兰, 李栋. 超薄空间复杂边界条件下气体流动压降实验[J]. 化工学报, 2024, 75(7): 2505-2521. |
[13] | 赵赫, 费滢洁, 朱春英, 付涛涛, 马友光. 高黏体系中纳米颗粒稳定气泡的形变及破裂行为[J]. 化工学报, 2024, 75(6): 2180-2189. |
[14] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[15] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 196
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||