化工学报 ›› 2013, Vol. 64 ›› Issue (12): 4434-4438.DOI: 10.3969/j.issn.0438-1157.2013.12.025

• 过程系统工程 • 上一篇    下一篇

基于高斯过程和贝叶斯决策的组合模型软测量

雷瑜, 杨慧中   

  1. 江南大学教育部轻工过程先进控制重点实验室, 江苏 无锡 214122
  • 收稿日期:2013-08-26 修回日期:2013-09-11 出版日期:2013-12-05 发布日期:2013-12-05
  • 通讯作者: 杨慧中
  • 作者简介:雷瑜(1988- ),女,硕士研究生。
  • 基金资助:

    国家自然科学基金项目(61273070);江苏高校优势学科建设工程资助项目。

Combination model soft sensor based on Gaussian process and Bayesian committee machine

LEI Yu, YANG Huizhong   

  1. Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2013-08-26 Revised:2013-09-11 Online:2013-12-05 Published:2013-12-05
  • Supported by:

    supported by the National Natural Science Foundation of China (61273070) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

摘要: 为了提高化工生产过程中软测量建模的估计精度,提出了一种基于高斯过程和贝叶斯决策的组合模型建模方法。该方法在对原始数据进行分类的基础上,利用高斯过程对每个子类建立软测量子模型,通过贝叶斯决策方法实现模型的联合估计输出。将该建模方法应用于某双酚A装置的软测量建模中,仿真结果表明,相比于传统的开关切换或加权组合多模型,该组合模型能在实际生产中充分利用样本信息,使得具有更高的估计精度和更强的泛化性能。

关键词: 高斯过程, 贝叶斯决策, 软测量, 组合模型

Abstract: In order to improve the estimation accuracy of a soft sensor in the process of chemical production,a combination model for soft sensor is presented based on Gaussian process and Bayesian committee machine.The original data are classified into several subclasses,and then,the sub-models are built by Gaussian process regression.In order to get a global probabilistic prediction,Bayesian committee machine is used to combine the outputs of the sub-estimators.Finally,the algorithm is applied to a soft sensor model for a production plant of bisphenol A.Simulation results show that the integration algorithm can make full use of sample information in the actual production,and the estimated accuracy of model is improved,and the generalization ability is better,comparing to the traditional switch or a weighted combination of multiple model.

Key words: Gaussian process, Bayesian committee machine, soft sensor, combination model

中图分类号: