1 |
穆瑞, 乐高杨, 杨慧中 . 基于O3/UV法在线COD检测的气体溶解量估计方法[J]. 化工学报, 2019, 70(2): 730-735.
|
|
Mu R , Le G Y , Yang H Z . Estimation method of gas dissolved amount based on O3/UV method for online COD detection [J]. CIESC Journal, 2019, 70(2): 730-735.
|
2 |
宋建军, 赵凌 . 紫外吸收光谱法检测化学需氧量的方法[J]. 传感器与微系统, 2018, 37(5): 30-33.
|
|
Song J J , Zhao L . Methods for determination of chemical oxygen demand by ultraviolet absorption spectroscopy[J]. Transducer and Microsystems, 2018, 37(5): 30-33.
|
3 |
李名升, 张建辉, 罗海江, 等 . “十一五”期间中国化学需氧量减排与水环境质量变化关联分析[J]. 生态环境学报, 2011, 20(3): 463-467.
|
|
Li M S , Zhang J H , Luo H J , et al . Relation between water quality and COD discharge in China in the Eleventh Five-Year Plan[J]. Ecology and Environmental Sciences, 2011, 20(3): 463-467.
|
4 |
Hanbay D , Turkoglu I , Demir Y . Prediction of chemical oxygen demand (COD) based on wavelet decomposition and neural networks[J]. CLEAN - Soil, Air, Water, 2010, 35(3): 250-254.
|
5 |
Li Q , Peng J , Tang D , et al . A study on the UKFNN-based online detection of effluent COD in water sewage treatment[C]// Industrial Electronics & Applications. IEEE, 2015.
|
6 |
李雪梅, 朱燕 . 快速消解分光光度法测定污水化学需氧量[J]. 化学分析计量, 2018, 27(3): 36-39.
|
|
Li X M , Zhu Y . Determination of chemical oxygen demand in sewage by rapid digestion spectrophotometry[J]. Chemical Analysis & Metering, 2018, 27(3): 36-39.
|
7 |
孙立岩, 姚志鹏, 张军, 等 . 地表水中TOC与COD换算关系研究[J]. 中国环境监测, 2013, 29(2): 125-130.
|
|
Sun L Y , Yao Z P , Zhang J , et al . Study on the relationship between TOC and COD conversion in surface water [J]. Environmental Monitoring in China, 2013, 29(2): 125-130.
|
8 |
Zhao H , Jiang D , Zhang S , et al . Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J]. Analytical Chemistry, 2015, 76(1): 155-160.
|
9 |
肖峻, 杨孟孟, 缪震华, 等 . 嵌入式污水COD在线监测仪的研制与应用[J]. 环境工程学报, 2017, 11(5): 3312-3319.
|
|
Xiao J , Yang M M , Miu Z H , et al . Development and application of embedded COD online monitoring instrument for sewage [J]. Journal of Environmental Engineering, 2017, 11(5): 3312-3319.
|
10 |
Ye Y , Zhuang Y . The COD predictive technique based on neural network[C]// International Conference on Mechatronic Sciences. IEEE, 2014.
|
11 |
曹为阳 . 污水处理出水COD软测量预测建模方法的研究[D]. 马鞍山: 安徽工业大学, 2017.
|
|
Cao W Y . Research on COD soft measurement prediction modeling method for wastewater treatment effluent [D]. Ma’anshan: Anhui University of Technology, 2017.
|
12 |
Azadi S , Amiri H , Rakhshandehroo G R . Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills[J]. Waste Management, 2016, 55: 220-230.
|
13 |
Qiao J , Li W , Han H . Soft computing of biochemical oxygen demand using an improved T–S fuzzy neural network[J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12): 1254-1259.
|
14 |
Li Y H , Shi Y T , Wang K , et al . Design of online monitoring device for COD parameter in industrial sewage based on soft measurement method[C]// Automation. IEEE, 2017: 959-964.
|
15 |
乔俊飞, 郭楠, 韩红桂 . 基于神经网络的BOD参数软测量仪表的设计[J]. 计算机与应用化学, 2013, 30(10): 1219-1222.
|
|
Qiao J F , Guo N , Han H G . Design of soft measuring instrument for BOD parameters based on neural network[J]. Computer and Applied Chemistry, 2013, 30(10): 1219-1222.
|
16 |
任东红 . 基于集成神经网络的污水处理出水水质软测量模型[D]. 北京: 北京工业大学, 2013.
|
|
Ren D H . Soft sensor model for wastewater treatment effluent based on integrated neural network [D]. Beijing: Beijing University of Technology, 2013.
|
17 |
郭楠 . 基于神经网络的BOD软测量仪表的研究[D]. 北京: 北京工业大学, 2014.
|
|
Guo N . Research on BOD soft measuring instrument based on neural network [D]. Beijing: Beijing University of Technology, 2014.
|
18 |
乔俊飞, 安茹, 韩红桂 . 基于RBF神经网络的出水氨氮预测研究[J]. 控制工程, 2016, 23(9): 1301-1305.
|
|
Qiao J F , An R , Han H G . Prediction of effluent ammonia nitrogen based on RBF neural network[J]. Control Engineering, 2016, 23(9): 1301-1305.
|
19 |
崔雪梅 . 基于灰色GA-LM-BP模型的COD_(Mn)预测[J]. 水利水电科技进展, 2013, 33(5): 38-41.
|
|
Cui X M . Prediction of COD_(Mn) based on grey GA-LM-BP model[J]. Advances in Science and Technology of Water Resources, 2013, 33(5): 38-41.
|
20 |
高峰, 冯民权, 滕素芬 . 基于PSO优化BP神经网络的水质预测研究[J]. 安全与环境学报, 2015, 15(4): 338-341.
|
|
Gao F , Feng M Q , Teng S F . Water quality prediction based on BP neural network optimized by PSO[J]. Journal of Safety and Environment, 2015, 15(4): 338-341.
|
21 |
Ye G Q , Li W G , Wan H . Study of RBF neural network based on PSO algorithm in nonlinear system identification[C]// International Conference on Intelligent Computation Technology & Automation. IEEE, 2016.
|
22 |
乔俊飞, 孙玉庆, 韩红桂 . 改进K-means算法优化RBF神经网络的出水氨氮预测[J]. 控制工程, 2018, 25(3): 375-379.
|
|
Qiao J F , Sun Y Q , Han H G . Improved K-means algorithm for optimization of effluent ammonia nitrogen prediction in RBF neural network[J]. Control Engineering, 2018, 25(3): 375-379.
|
23 |
刘博, 肖长来, 梁秀娟 . SOM-RBF神经网络模型在地下水位预测中的应用[J]. 吉林大学学报(地球科学版), 2015, 45(1): 225-231.
|
|
Liu B , Xiao C L , Liang X J . Application of SOM-RBF neural network model in groundwater level prediction[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1): 225-231.
|
24 |
乔俊飞, 马士杰, 杨翠丽 . 基于ROLS算法的递归RBF神经网络结构设计[J]. 化工学报, 2018, 69(3): 1191-1199.
|
|
Qiao J F , Ma S J , Yang C L . Structural design of recursive RBF neural network based on ROLS algorithm[J]. CIESC Journal, 2018, 69(3): 1191-1199.
|
25 |
李文静, 李萌, 乔俊飞 . 基于互信息和自组织RBF神经网络的出水BOD软测量方法[J]. 化工学报, 2019, 70(2): 687-695.
|
|
Li W J , Li M , Qiao J F . Soft measurement method of effluent BOD based on mutual information and self-organizing RBF neural network [J]. CIESC Journal, 2019, 70(2): 687-695.
|
26 |
李晋贤 . 基于HS-RBF的污水处理出水COD软测量研究[D]. 绵阳: 西南科技大学, 2017.
|
|
Li J X . Soft-measurement of COD based on HS-RBF for wastewater treatment [D]. Mianyang: Southwest University of Science and Technology, 2017.
|
27 |
韩红桂, 林征来, 乔俊飞 . 一种基于混合梯度下降算法的模糊神经网络设计及应用[J]. 控制与决策, 2017, 32(9): 1635-1641.
|
|
Han H G , Lin Z L , Qiao J F . Design and application of a fuzzy neural network based on hybrid gradient descent algorithm [J]. Control and Decision-making, 2017, 32(9): 1635-1641.
|
28 |
孙娅楠 . 梯度下降法在机器学习中的应用[D]. 成都: 西南交通大学, 2018.
|
|
Sun Y N . Application of gradient descent method in machine learning [D]. Chengdu: Southwest Jiaotong University, 2018.
|
29 |
周萌, 王振华, 王昶, 等 . Lipschitz非线性系统的H_/L ∞故障检测观测器设计[J]. 控制理论与应用, 2018, 35(6): 778-785.
|
|
Zhou M , Wang Z H , Wang C , et al . H_/L ∞ fault detection observer design for Lipschitz nonlinear systems [J]. Control Theory and Applications, 2008, 35(6): 778-785.
|
30 |
Jakovetić D , Xavier J , Moura J M F . Convergence rate analysis of distributed gradient methods for smooth optimization[C]// Telecommunications Forum. IEEE, 2013: 867-870.
|