CIESC Journal ›› 2014, Vol. 65 ›› Issue (2): 390-395.DOI: 10.3969/j.issn.0438-1157.2014.02.004
杜瑾, 贾晓强, 元英进
收稿日期:
2013-06-18
修回日期:
2013-10-11
出版日期:
2014-02-05
发布日期:
2014-02-05
通讯作者:
元英进
基金资助:
DU Jin, JIA Xiaoqiang, YUAN Yingjin
Received:
2013-06-18
Revised:
2013-10-11
Online:
2014-02-05
Published:
2014-02-05
Supported by:
摘要: 合成生物学正在从设计构建基本功能元件和模块,逐步向着从头设计人工细胞及构建人工生物群落的方向发展,人工合成微生物混菌体系已经成为未来合成生物学研究的重要方向。本文综述了人工构建微生物群落生态关系、群落时空动态和分布式计算等基础研究的进展。同时,微生物混菌体系在医药、环境、能源等领域发挥着不可替代的作用,人工合成混菌体系在相关领域也表现出巨大的应用潜力。
中图分类号:
杜瑾, 贾晓强, 元英进. 人工合成微生物混菌体系的研究进展[J]. CIESC Journal, 2014, 65(2): 390-395.
DU Jin, JIA Xiaoqiang, YUAN Yingjin. Research progress of synthetic microbial consortia[J]. , 2014, 65(2): 390-395.
[1] | Zhao Xueming(赵学明), Wang Qingzhao(王庆昭). Synthetic biology: fundamentals, advances and prospect[J]. Frontier Science (前沿科学), 2007,3:56-66 |
[2] | Lin Qishui(林其谁). Synthetic biology[J]. Chinese Bulletin of Life Sciences (生命科学), 2005, 17(5): 384-386 |
[3] | Ling Yan(凌焱), Duan Haiqing(段海清), Chen Huipeng(陈惠鹏). Synthetic biology[J]. Bulletin of the Academy of Military Medical Sciences (军事医学科学院院刊), 2006, 3(6): 66-69 |
[4] | Zhang Chunting(张春霆). Advances in synthetic biology studies[J]. Bulletin of National Natural Science Foundation of China (中国科学基金), 2009(2): 65-69 |
[5] | Liu Duo(刘夺), Du Jin(杜瑾), Zhao Guangrong(赵广荣), Yuan Yingjin(元英进). Applications of synthetic biology in medicine and energy[J]. CIESC Journal (化工学报), 2011, 62(9): 2391-2397 |
[6] | Du Jin(杜瑾), Liu Duo(刘夺), Zhao Guangrong(赵广荣), Yuan Yingjin(元英进). General situation on the disciplinary development in synthetic biology[J]. Bulletin of National Natural Science Foundation of China (中国科学基金), 2011(3): 143-147 |
[7] | Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli[J]. Nature, 2000, 403: 339-342 |
[8] | Hasty J, McMillen D, Collins J J. Engineered gene circuits[J]. Nature, 2002, 420: 224-230 |
[9] | Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403: 335-338 |
[10] | Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang M C, Withers S T, Shiba Y, Sarpong R, Keasling J D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440: 940-943 |
[11] | Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451: 86-89 |
[12] | Ajikumar P K, Xiao W H, Tyo K E, Wang Y, Simeon F, Leonard E, Mucha O, Phon T H, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330: 70-74 |
[13] | Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G. Accurate multiplex gene synthesis from programmable DNA microchips[J]. Nature, 2004, 432: 1050-1054 |
[14] | Kosuri S, Eroshenko N, LeProust E M, Super M, Way J, Li J B, Church G M. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips[J]. Nat. Biotechnol., 2010, 28: 1295-1299 |
[15] | Matzas M, Stähler P F, Kefer N, Siebelt N, Boisguérin V, Leonard J T, Keller A, Stähler C F, Häberle P, Gharizadeh B. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing[J]. Nat. Biotechnol., 2010, 28: 1291-1294 |
[16] | Gibson D G, Benders G A, Axelrod K C, Zaveri J, Algire M A, Moodie M, Montague M G, Venter J C, Smith H O, Hutchison C A 3rd. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome[J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 20404-20409 |
[17] | Gibson D G, Benders G A, Andrews-Pfannkoch C, Denisova E A, Baden-Tillson H, Zaveri J, Stockwell T B, Brownley A, Thomas D W, Algire M A, Merryman C, Young L, Noskov V N, Glass J I, Venter J C, Hutchison C A 3rd, Smith H O. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome[J]. Science, 2008, 319: 1215-1220 |
[18] | Shao Z, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways[J]. Nucleic. Acids. Res., 2009, 37: e16 |
[19] | Shao Z, Luo Y, Zhao H. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler[J]. Mol. Biosyst., 2011, 7: 1056-1059 |
[20] | Gibson D G, Glass J I, Lartigue C, Noskov V N, Chuang R Y, Algire M A, Benders G A, Montague M G, Ma L, Moodie M M, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova E A, Young L, Qi Z Q, Segall-Shapiro T H, Calvey C H, Parmar P P, Hutchison C A 3rd, Smith H O, Venter J C. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329: 52-56 |
[21] | Dymond J S, Richardson S M, Coombes C E, Babatz T, Muller H, Annaluru N, Blake W J, Schwerzmann J W, Dai J, Lindstrom D L, Boeke A C, Gottschling D E, Chandrasegaran S, Bader J S, Boeke J D. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design[J]. Nature, 2011, 477: 471-476 |
[22] | Gerchman Y, Weiss R. Teaching bacteria a new language[J]. Proc. Natl. Acad. Sci. USA, 2004, 101: 2221-2222 |
[23] | Shong J, Jimenez Diaz M R, Collins C H. Towards synthetic microbial consortia for bioprocessing[J]. Curr. Opin. Biotechnol., 2012, 23: 798-802 |
[24] | Basu S, Mehreja R, Thiberge S, Chen M T, Weiss R. Spatiotemporal control of gene expression with pulse-generating networks[J]. Proc. Natl. Acad. Sci. USA, 2004, 101: 6355-6360 |
[25] | Basu S, Gerchman Y, Collins C H, Arnold F H, Weiss R. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434: 1130-1134 |
[26] | Brenner K, Karig D K, Weiss R, Arnold F H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium[J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 17300-17304 |
[27] | Balagaddé F K, Song H, Ozaki J, Collins C H, Barnet M, Arnold F H, Quake S R, You L. A synthetic Escherichia coli predator–prey ecosystem[J]. Mol. Syst. Biol., 2008, 4: 187 |
[28] | Hu B, Du J, Zou R Y, Yuan Y J. An environment-sensitive synthetic microbial ecosystem[J]. PLoS One, 2010, 5: e10619 |
[29] | Chuang J S, Rivoire O, Leibler S. Cooperation and Hamilton's rule in a simple synthetic microbial system[J]. Mol. Syst. Biol., 2010, 6: 398 |
[30] | Hong S H, Hegde M, Kim J, Wang X, Jayaraman A, Wood T K. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device[J]. Nat. Commun., 2012, 3: 613 |
[31] | Shou W, Ram S, Vilar J M G. Synthetic cooperation in engineered yeast populations[J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 1877-1882 |
[32] | Kerner A, Park J, Williams A, Lin X N. A programmable Escherichia coli consortium via tunable symbiosis[J]. PLoS One, 2012, 7: e34032 |
[33] | Kubo I, Hosoda K, Suzuki S, Yamamoto K, Kihara K, Mori K, Yomo T. Construction of bacteria-eukaryote synthetic mutualism[J]. Biosystems, 2013,113:66-71 |
[34] | Weber W, Baba D E, Fussenegger M. Synthetic ecosystems based on airborne inter- and intrakingdom communication[J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 10435-10440 |
[35] | Prindle A, Samayoa P, Razinkov I, Danino T, Tsimring L S, Hasty J. A sensing array of radically coupled genetic ‘biopixels'[J]. Nature, 2012, 481: 39-44 |
[36] | Song H, Payne S, Gray M, You L. Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem[J]. Nat. Chem. Biol., 2009, 5: 929-935 |
[37] | Li B, You L. Synthetic biology: Division of logic labour[J]. Nature, 2011, 469: 171-172 |
[38] | Tamsir A, Tabor J J, Voigt C A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires'[J]. Nature, 2011, 469: 212-215 |
[39] | Regot S, Macia J, Conde N, Furukawa K, Kjellén J, Peeters T, Hohmann S, de Nadal E, Posas F, Solé R. Distributed biological computation with multicellular engineered networks[J]. Nature, 2010, 469: 207-211 |
[40] | Ji W, Shi H, Zhang H, Sun R, Xi J, Wen D, Feng J, Chen Y, Qin X, Ma Y, Luo W, Deng L, Lin H, Yu R, Ouyang Q. A formalized design process for bacterial consortia that perform logic computing[J]. PLoS One, 2013, 8: e57482 |
[41] | Macía J, Posas F, Solé R V. Distributed computation: the new wave of synthetic biology devices[J]. Trends Biotechnol., 2012, 30: 342-349 |
[42] | Eiteman M A, Lee S A, Altman E. A co-fermentation strategy to consume sugar mixtures effectively[J]. J. Biol. Eng., 2008, 2: 3 |
[43] | Shin H D, McClendon S, Vo T, Chen R R. Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel[J]. Appl. Environ. Microbiol., 2010, 76: 8150-8159 |
[44] | Tsai S L, Goyal G, Chen W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production[J]. Appl. Environ. Microbiol., 2010, 76: 7514-7520 |
[45] | Goyal G, Tsai S L, Madan B, DaSilva N A, Chen W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome[J]. Microb. Cell Fact., 2011, 10: 89 |
[46] | Minty J J, Singer M E, Scholz S A, Bae C H, Ahn J H, Foster C E, Liao J C, Lin X N. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass[J]. Proc. Natl. Acad. Sci. USA, 2013, doi: 10.1073/pnas.1218447110 |
[47] | Duan F, March J C. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model[J]. Proc. Natl. Acad. Sci. USA, 2010, 107: 11260-11264 |
[48] | Saeidi N, Wong C K, Lo T M, Nguyen H X, Ling H, Leong S S, Poh C L, Chang M W. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen[J]. Mol. Syst. Biol., 2011, 7: 521 |
[49] | Perkel J M. Streamlined engineering for synthetic biology[J]. Nature Methods, 2012, 10: 39 |
[50] | Purnick P E, Weiss R. The second wave of synthetic biology: from modules to systems[J]. Nat. Rev. Mol. Cell Biol., 2009, 10: 410-422 |
[51] | Brenner K, You L, Arnold F H. Engineering microbial consortia: a new frontier in synthetic biology[J]. Trends Biotechnol., 2008, 26: 483-489 |
[52] | Wintermute E H, Silver P A. Dynamics in the mixed microbial concourse[J]. Genes Dev., 2010, 24: 2603-2614 |
[53] | Gilbert E, Walker A, Keasling J. A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion[J]. Appl. Microbiol. Biotechnol., 2003, 61: 77-81 |
[1] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[2] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[3] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[4] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[5] | 王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323. |
[6] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[7] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[8] | 王欣, 赵鹏, 李清扬, 田平芳. 半导体合成生物学的研究进展[J]. 化工学报, 2021, 72(5): 2426-2435. |
[9] | 王凯峰, 王金鹏, 韦萍, 纪晓俊. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365. |
[10] | 赵贞尧, 张保财, 李锋, 宋浩. 产电细胞的合成生物学设计构建[J]. 化工学报, 2021, 72(1): 468-482. |
[11] | 王炼, 吴迪, 周景文. 木脂素的生物合成及其微生物法生产的研究进展[J]. 化工学报, 2021, 72(1): 320-333. |
[12] | 秦磊, 俞杰, 宁小钰, 孙文涛, 李春. 合成生物系统构建与绿色生物“智”造[J]. 化工学报, 2020, 71(9): 3979-3994. |
[13] | 高虎涛, 申晓林, 孙新晓, 王佳, 袁其朋. 代谢工程调控策略在生物合成氨基酸及其衍生物中的应用[J]. 化工学报, 2020, 71(9): 4058-4070. |
[14] | 徐静, 由紫暄, 张君奇, 陈正, 吴德光, 李锋, 宋浩. 合成生物学方法改造电活性生物膜研究进展[J]. 化工学报, 2020, 71(9): 3950-3962. |
[15] | 徐彦芹, 杨锡智, 罗若诗, 黄玉红, 霍锋, 王丹. 合成生物学在生物基塑料制造中的应用[J]. 化工学报, 2020, 71(10): 4520-4531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||