化工学报 ›› 2023, Vol. 74 ›› Issue (1): 330-341.DOI: 10.11949/0438-1157.20221321
收稿日期:
2022-10-08
修回日期:
2022-12-07
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
李春
作者简介:
刘昕(1992—),女,博士,助理研究员,xinliu815@mail.tsinghua.edu.cn
基金资助:
Xin LIU1,2(), Jun GE1,2, Chun LI1,2()
Received:
2022-10-08
Revised:
2022-12-07
Online:
2023-01-05
Published:
2023-03-20
Contact:
Chun LI
摘要:
太阳能作为最丰富且可再生的清洁能源,具有非常大的成本效益和发展潜力。自然光合作用效率低且难以干预,人工光合作用不稳定且成本高。以绿色、低碳的方式实现太阳能-化学的转化是现代社会可持续发展的迫切需要,也符合绿色生物制造的需求。光驱动微生物杂合系统作为一项新兴技术将非生物光敏材料与微生物全细胞结合起来,利用光敏材料优良的光吸收能力和微生物的特定高效合成能力,在利用太阳能驱动合成燃料和化学品方面显示出较大潜力。本文综述了光驱动微生物杂合系统在质子还原制氢、CO2还原转化、固氮和C—H键氧化等重要反应中的应用,并对光驱动微生物杂合系统未来的发展趋势进行了展望。
中图分类号:
刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341.
Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing[J]. CIESC Journal, 2023, 74(1): 330-341.
微生物 | 光敏材料 | 产物 | 效率 | 文献 |
---|---|---|---|---|
M. thermoacetica | CdS NPs | acetate | quantum yield 2.44%±0.62% | [ |
M. thermoacetica | Au NCs | acetate | quantum yield 2.86%±0.38% | [ |
M. thermoacetica | PFP/PDI | acetate | quantum yield 1.6% | [ |
M. barkeri | CdS NPs | CH4 | quantum yield 0.34% | [ |
M. barkeri | NCNCNx | CH4 | quantum yield 50.3% | [ |
M. barkeri | NiCu@CdS | CH4 | quantum yield 12.41%±0.16% | [ |
R. palustris | CdS NPs | C2+ | photosynthetic efficiency 5.98% | [ |
C. necator | QDs | C2+ | turnover number 106—108 | [ |
表1 光驱动微生物杂合系统还原转化CO2生产高价值化合物
Table 1 Summary of the performances of light-driven microbial hybrid systems for CO2 reduction
微生物 | 光敏材料 | 产物 | 效率 | 文献 |
---|---|---|---|---|
M. thermoacetica | CdS NPs | acetate | quantum yield 2.44%±0.62% | [ |
M. thermoacetica | Au NCs | acetate | quantum yield 2.86%±0.38% | [ |
M. thermoacetica | PFP/PDI | acetate | quantum yield 1.6% | [ |
M. barkeri | CdS NPs | CH4 | quantum yield 0.34% | [ |
M. barkeri | NCNCNx | CH4 | quantum yield 50.3% | [ |
M. barkeri | NiCu@CdS | CH4 | quantum yield 12.41%±0.16% | [ |
R. palustris | CdS NPs | C2+ | photosynthetic efficiency 5.98% | [ |
C. necator | QDs | C2+ | turnover number 106—108 | [ |
49 | Han H X, Tian L J, Liu D F, et al. Reversing electron transfer chain for light-driven hydrogen production in biotic-abiotic hybrid systems[J]. Journal of the American Chemical Society, 2022, 144(14): 6434-6441. |
50 | Luo B F, Wang Y Z, Li D, et al. A periplasmic photosensitized biohybrid system for solar hydrogen production[J]. Advanced Energy Materials, 2021, 11(19): 2100256. |
51 | Xu L Y, Xiu Y, Liu F Y, et al. Research progress in conversion of CO2 to valuable fuels[J]. Molecules, 2020, 25(16): 3653. |
52 | Handoko A D, Wei F X, Jenndy, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques[J]. Nature Catalysis, 2018, 1(12): 922-934. |
53 | Appel A M, Bercaw J E, Bocarsly A B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8): 6621-6658. |
54 | Costentin C, Robert M, Savéant J M. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013, 42(6): 2423-2436. |
55 | Diercks C S, Liu Y Z, Cordova K E, et al. The role of reticular chemistry in the design of CO2 reduction catalysts[J]. Nature Materials, 2018, 17(4): 301-307. |
56 | Inoue T, Fujishima A, Konishi S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638. |
57 | Li X, Yu J G, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179. |
58 | You J K, Xiao M, Wang Z L, et al. Non-noble metal-based cocatalysts for photocatalytic CO2 reduction[J]. Journal of CO2 Utilization, 2022, 55: 101817. |
59 | Nichols E M, Gallagher J J, Liu C, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. Proceedings of the National Academy of Sciences, 2015, 112(37): 11461-11466. |
60 | Aigner H, Wilson R H, Bracher A, et al. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2[J]. Science, 2017, 358(6368): 1272-1278. |
61 | Tan S I, Ng I S. Stepwise optimization of genetic RuBisCO-equipped Escherichia coli for low carbon-footprint protein and chemical production[J]. Green Chemistry, 2021, 23(13): 4800-4813. |
62 | Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield[J]. Annual Review of Plant Biology, 2010, 61: 235-261. |
63 | Mussgnug J H, Thomas-Hall S, Rupprecht J, et al. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion[J]. Plant Biotechnology Journal, 2007, 5(6): 802-814. |
64 | Claassens N J, Sousa D Z, dos Santos V A P M, et al. Harnessing the power of microbial autotrophy[J]. Nature Reviews Microbiology, 2016, 14(11): 692-706. |
65 | Sakimoto K K, Wong A B, Yang P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
66 | Zhang H, Liu H, Tian Z Q, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology, 2018, 13(10): 900-905. |
67 | Ye J, Yu J, Zhang Y Y, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid[J]. Applied Catalysis B: Environmental, 2019, 257: 117916. |
68 | Hu A D, Ye J, Ren G P, et al. Metal-free semiconductor-based bio-nano hybrids for sustainable CO2-to-CH4 conversion with high quantum yield[J]. Angewandte Chemie, 2022, 134(35): e202206508. |
69 | Ye J, Wang C, Gao C, et al. Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface[J]. Nature Communications, 2022, 13: 6612. |
70 | Wang B, Jiang Z F, Yu J C, et al. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system[J]. Nanoscale, 2019, 11(19): 9296-9301. |
71 | Ding Y C, Bertram J R, Eckert C, et al. Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrids[J]. Journal of the American Chemical Society, 2019, 141(26): 10272-10282. |
72 | Kornienko N, Sakimoto K K, Herlihy D M, et al. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production[J]. Proceedings of the National Academy of Sciences, 2016, 113(42): 11750-11755. |
73 | Sakimoto K K, Zhang S J, Yang P D. Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system[J]. Nano Letters, 2016, 16(9): 5883-5887. |
74 | Zhu C L, Liu L B, Yang Q, et al. Water-soluble conjugated polymers for imaging, diagnosis, and therapy[J]. Chemical Reviews, 2012, 112(8): 4687-4735. |
75 | Wang Y X, Feng L H, Wang S. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy[J]. Advanced Functional Materials, 2019, 29(5): 1806818. |
76 | Su Y D, Cestellos-Blanco S, Kim J M, et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation[J]. Joule, 2020, 4(4): 800-811. |
77 | Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611. |
78 | Hoffman B M, Lukoyanov D, Yang Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: the next stage[J]. Chemical Reviews, 2014, 114(8): 4041-4062. |
79 | Wang B, Xiao K M, Jiang Z F, et al. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures[J]. Energy & Environmental Science, 2019, 12(7): 2185-2191. |
80 | Cestellos-Blanco S, Chan R R, Shen Y X, et al. Photosynthetic biohybrid coculture for tandem and tunable CO2 and N2 fixation[J]. Proceedings of the National Academy of Sciences, 2022, 119(26): e2122364119. |
81 | Zhang R K, Huang X Y, Arnold F H. Selective C—H bond functionalization with engineered heme proteins: new tools to generate complexity[J]. Current Opinion in Chemical Biology, 2019, 49: 67-75. |
82 | Tran N H, Nguyen D, Dwaraknath S, et al. An efficient light-driven P450 BM3 biocatalyst[J]. Journal of the American Chemical Society, 2013, 135(39): 14484-14487. |
83 | Park J H, Lee S H, Cha G S, et al. Cofactor-free light-driven whole-cell cytochrome P450 catalysis[J]. Angewandte Chemie, 2015, 127(3): 983-987. |
84 | Scherson Y D, Wells G F, Woo S G, et al. Nitrogen removal with energy recovery through N2O decomposition[J]. Energy & Environmental Science, 2013, 6(1): 241-248. |
85 | Chaturvedi S, Dave P N. Review on thermal decomposition of ammonium nitrate[J]. Journal of Energetic Materials, 2013, 31(1): 1-26. |
86 | Chen M, Zhou X F, Yu Y Q, et al. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans [J]. Environment International, 2019, 127: 353-360. |
87 | Chen M, Cai Q H, Chen X Y, et al. Anthraquinone-2-sulfonate as a microbial photosensitizer and capacitor drives solar-to-N2O production with a quantum efficiency of almost unity[J]. Environmental Science & Technology, 2022, 56(8): 5161-5169. |
88 | List B, Lerner R A, Barbas C F. Proline-catalyzed direct asymmetric aldol reactions[J]. Journal of the American Chemical Society, 2000, 122(10): 2395-2396. |
89 | Yoon M, Srirambalaji R, Kim K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis[J]. Chemical Reviews, 2012, 112(2): 1196-1231. |
90 | Noyori R. Asymmetric catalysis: science and opportunities (nobel lecture)[J]. Angewandte Chemie International Edition, 2002, 41(12): 2008-22. |
91 | Guo X W, Okamoto Y, Schreier M R, et al. Enantioselective synthesis of amines by combining photoredox and enzymatic catalysis in a cyclic reaction network[J]. Chemical Science, 2018, 9(22): 5052-5056. |
92 | Liu Z H, Zhang Y P, Nielsen J. Synthetic biology of yeast[J]. Biochemistry, 2019, 58(11): 1511-1520. |
93 | Keasling J D. Synthetic biology for synthetic chemistry[J]. ACS Chemical Biology, 2008, 3(1): 64-76. |
94 | Wang B, Wang J X, Zhang W W, et al. Application of synthetic biology in cyanobacteria and algae[J]. Frontiers in Microbiology, 2012, 3: 344. |
95 | Smanski M J, Zhou H, Claesen J, et al. Synthetic biology to access and expand nature's chemical diversity[J]. Nature Reviews Microbiology, 2016, 14(3): 135-149. |
96 | Wang X Y, Zhang J C, Li K, et al. Photocatalyst-mineralized biofilms as living bio-abiotic interfaces for single enzyme to whole-cell photocatalytic applications[J]. Science Advances, 2022, 8(18): eabm7665. |
97 | Li Y F, Li K, Wang X Y, et al. Conformable self-assembling amyloid protein coatings with genetically programmable functionality[J]. Science Advances, 2020, 6(21): eaba1425. |
98 | Guo J L, Suástegui M, Sakimoto K K, et al. Light-driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362(6416): 813-816. |
99 | Blankenship R E, Tiede D M, Barber J, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332(6031): 805-809. |
100 | Pan H. Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 584-601. |
101 | Mondal S, Yucknovsky A, Akulov K, et al. Efficient photosensitizing capabilities and ultrafast carrier dynamics of doped carbon dots[J]. Journal of the American Chemical Society, 2019, 141(38): 15413-15422. |
102 | Liu J L, Ren X M, Li C Z, et al. Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration[J]. Applied Catalysis B: Environmental, 2022, 310: 121314. |
103 | Liu C, Colón B C, Ziesack M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290): 1210-1213. |
104 | He A Y, Yin C Y, Xu H, et al. Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4 [J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 245-254. |
105 | Li H, Opgenorth P H, Wernick D G, et al. Integrated electromicrobial conversion of CO2 to higher alcohols[J]. Science, 2012, 335(6076): 1596. |
106 | Shi S L, Zeng C P, Si T, et al. Photobiocatalytic solar fuel and solar chemical conversion: sufficient activity and better selectivity[J]. ACS ES&T Engineering, 2022, 2(6): 989-1000. |
107 | Jiang Z F, Xiao K M, Liang J, et al. Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective[J]. Energy & Environmental Science, 2022,15: 529-549. |
108 | Armstrong F A, Hirst J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes[J]. Proceedings of the National Academy of Sciences, 2011, 108(34): 14049-14054. |
1 | Barber J. Photosynthetic energy conversion: natural and artificial[J]. Chemical Society Reviews, 2009, 38(1): 185-196. |
2 | Lewis N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271): aad1920. |
3 | Cestellos-Blanco S, Zhang H, Kim J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis, 2020, 3(3): 245-255. |
4 | Kim J H, Hansora D, Sharma P, et al. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge[J]. Chemical Society Reviews, 2019, 48(7): 1908-1971. |
5 | Kornienko N, Zhang J Z, Sakimoto K K, et al. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis[J]. Nature Nanotechnology, 2018, 13(10): 890-899. |
6 | Zhang B B, Sun L C. Artificial photosynthesis: opportunities and challenges of molecular catalysts[J]. Chemical Society Reviews, 2019, 48(7): 2216-2264. |
7 | Zhu S S, Wang D W. Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities[J]. Advanced Energy Materials, 2017, 7(23): 1700841. |
8 | Romero N A, Nicewicz D A. Organic photoredox catalysis[J]. Chemical Reviews, 2016, 116(17): 10075-10166. |
9 | Schultz D M, Yoon T P. Solar synthesis: prospects in visible light photocatalysis[J]. Science, 2014, 343(6174): 1239176. |
10 | Prier C K, Rankic D A, MacMillan D W C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis[J]. Chemical Reviews, 2013, 113(7): 5322-5363. |
11 | Truppo M D. Biocatalysis in the pharmaceutical industry: the need for speed[J]. ACS Medicinal Chemistry Letters, 2017, 8(5): 476-480. |
12 | Chen Y J, Li P, Zhou J W, et al. Integration of enzymes and photosensitizers in a hierarchical mesoporous metal-organic framework for light-driven CO2 reduction[J]. Journal of the American Chemical Society, 2020, 142(4): 1768-1773. |
13 | Plumeré N, Rüdiger O, Oughli A A, et al. A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage[J]. Nature Chemistry, 2014, 6(9): 822-827. |
14 | Li H G, Buesen D, Dementin S, et al. Complete protection of O2- sensitive catalysts in thin films[J]. Journal of the American Chemical Society, 2019, 141(42): 16734-16742. |
15 | Brown K A, Wilker M B, Boehm M, et al. Photocatalytic regeneration of nicotinamide cofactors by quantum dot-enzyme biohybrid complexes[J]. ACS Catalysis, 2016, 6(4): 2201-2204. |
16 | Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. |
17 | Sakimoto K K, Kornienko N, Yang P D. Cyborgian material design for solar fuel production: the emerging photosynthetic biohybrid systems[J]. Accounts of Chemical Research, 2017, 50(3): 476-481. |
18 | Gai P P, Yu W, Zhao H, et al. Solar-powered organic semiconductor-bacteria biohybrids for CO2 reduction into acetic acid[J]. Angewandte Chemie International Edition, 2020, 59(18): 7224-7229. |
19 | da Silva Veras T, Mozer T S, da Silva César A, et al. Hydrogen: trends, production and characterization of the main process worldwide[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2018-2033. |
20 | Bunker C E, Smith M J. Nanoparticles for hydrogen generation[J]. Journal of Materials Chemistry, 2011, 21(33): 12173-12180. |
21 | Goto Y, Hisatomi T, Wang Q, et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation[J]. Joule, 2018, 2(3): 509-520. |
22 | He Y M, Wang D W. Toward practical solar hydrogen production[J]. Chem, 2018, 4(3): 405-408. |
23 | Youngblood W J, Lee S H A, Maeda K, et al. Visible light water splitting using dye-sensitized oxide semiconductors[J]. Accounts of Chemical Research, 2009, 42(12): 1966-1973. |
24 | Chandran R B, Breen S, Shao Y X, et al. Evaluating particle-suspension reactor designs for Z-scheme solar water splitting via transport and kinetic modeling[J]. Energy & Environmental Science, 2018, 11(1): 115-135. |
25 | Honda Y, Hagiwara H, Ida S, et al. Application to photocatalytic H2 production of a whole-cell reaction by recombinant Escherichia coli cells expressing [FeFe]-hydrogenase and maturases genes[J]. Angewandte Chemie, 2016, 128(28): 8177-8180. |
109 | Del Barrio M, Sensi M, Orain C, et al. Electrochemical investigations of hydrogenases and other enzymes that produce and use solar fuels[J]. Accounts of Chemical Research, 2018, 51(3): 769-777. |
110 | Reuillard B, Ly K H, Rosser T E, et al. Tuning product selectivity for aqueous CO2 reduction with a Mn(bipyridine)-pyrene catalyst immobilized on a carbon nanotube electrode[J]. Journal of the American Chemical Society, 2017, 139(41): 14425-14435. |
111 | Willkomm J, Orchard K L, Reynal A, et al. Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production[J]. Chemical Society Reviews, 2016, 45(1): 9-23. |
26 | Honda Y, Watanabe M, Hagiwara H, et al. Inorganic/whole-cell biohybrid photocatalyst for highly efficient hydrogen production from water[J]. Applied Catalysis B: Environmental, 2017, 210: 400-406. |
27 | Rumpel S, Siebel J F, Farès C, et al. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem Ⅰ to hydrogenase[J]. Energy & Environmental Science, 2014, 7(10): 3296-3301. |
28 | Lea-Smith D J, Bombelli P, Vasudevan R, et al. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016, 1857(3): 247-255. |
29 | Lubner C E, Applegate A M, Knörzer P, et al. Solar hydrogen-producing bionanodevice outperforms natural photosynthesis[J]. Proceedings of the National Academy of Sciences, 2011, 108(52): 20988-20991. |
30 | Brown K A, King P W. Coupling biology to synthetic nanomaterials for semi-artificial photosynthesis[J]. Photosynthesis Research, 2020, 143(2): 193-203. |
31 | Wilker M B, Shinopoulos K E, Brown K A, et al. Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H2 generation[J]. Journal of the American Chemical Society, 2014, 136(11): 4316-4324. |
32 | Hutton G A M, Reuillard B, Martindale B C M, et al. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes[J]. Journal of the American Chemical Society, 2016, 138(51): 16722-16730. |
33 | Reisner E, Fontecilla-Camps J C, Armstrong F A. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production[J]. Chemical Communications, 2009 (5): 550-552. |
34 | Holá K, Pavliuk M V, Németh B, et al. Carbon dots and [FeFe] hydrogenase biohybrid assemblies for efficient light-driven hydrogen evolution[J]. ACS Catalysis, 2020, 10(17): 9943-9952. |
35 | Brown K A, Wilker M B, Boehm M, et al. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes[J]. Journal of the American Chemical Society, 2012, 134(12): 5627-5636. |
36 | Zhang L Y, Beaton S E, Carr S B, et al. Direct visible light activation of a surface cysteine-engineered [NiFe]-hydrogenase by silver nanoclusters[J]. Energy & Environmental Science, 2018, 11(12): 3342-3348. |
37 | Shen H Q, Wang Y Z, Liu G W, et al. A whole-cell inorganic-biohybrid system integrated by reduced graphene oxide for boosting solar hydrogen production[J]. ACS Catalysis, 2020, 10(22): 13290-13295. |
38 | Krasnovsky A A, Nikandrov V V. The photobiocatalytic system: inorganic semiconductors coupled to bacterial cells[J]. FEBS Letters, 1987, 219(1): 93-96. |
39 | Gurunathan K. Photobiocatalytic production of hydrogen using sensitized TiO2-MV2+ system coupled Rhodopseudomonas capsulata [J]. Journal of Molecular Catalysis A: Chemical, 2000, 156(1/2): 59-67. |
40 | Maruthamuthu P, Muthu S, Gurunathan K, et al. Photobiocatalysis: hydrogen evolution using a semiconductor coupled with photosynthetic bacteria[J]. International Journal of Hydrogen Energy, 1992, 17(11): 863-866. |
41 | Lacasse M J, Douglas C D, Zamble D B. Mechanism of selective nickel transfer from HypB to HypA, Escherichia coli [NiFe]-hydrogenase accessory proteins[J]. Biochemistry, 2016, 55(49): 6821-6831. |
42 | Wang C, Lum A, Ozuna S, et al. Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene[J]. Applied Microbiology and Biotechnology, 2001, 56(3): 425-430. |
43 | Wang B, Zeng C P, Chu K H, et al. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles[J]. Advanced Energy Materials, 2017, 7(20): 1700611. |
44 | Jiang Z F, Wang B, Jimmy C Y, et al. AgInS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production[J]. Nano Energy, 2018, 46: 234-240. |
45 | Xiao K M, Tsang T H, Sun D, et al. Interfacing iodine-doped hydrothermally carbonized carbon with Escherichia coli through an “add-on” mode for enhanced light-driven hydrogen production[J]. Advanced Energy Materials, 2021, 11(21): 2100291. |
46 | Wu D, Zhang W M, Fu B H, et al. Living intracellular inorganic-microorganism biohybrid system for efficient solar hydrogen generation[J]. Joule, 2022, 6(10): 2293-2303. |
47 | Breuer M, Rosso K M, Blumberger J, et al. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities[J]. Journal of The Royal Society Interface, 2015, 12(102): 20141117. |
48 | Rowe S F, Le Gall G L, Ainsworth E V, et al. Light-driven H2 evolution and C ̿ C or C ̿ O bond hydrogenation by Shewanella oneidensis: a versatile strategy for photocatalysis by nonphotosynthetic microorganisms[J]. ACS Catalysis, 2017, 7(11): 7558-7566. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[5] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[6] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[9] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[10] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[11] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[12] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[13] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[14] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[15] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 558
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 626
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||