[1] |
ZHAO D Y, HUO Q S, FENG J L, et al. Correction to "Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures"[J]. Journal of the American Chemical Society, 2014, 136(29):10546.
|
[2] |
WANG Y, HAN N, ZHAO Q F, et al. Redox-responsive mesoporous silica as carriers for controlled drug delivery:a comparative study based on silica and PEG gatekeepers[J]. European Journal of Pharmaceutical Sciences, 2015, 72(2):12-20.
|
[3] |
PAPAT A, HARTONO S B, STAHR F, et al. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation and delivery carriers[J]. Nanoscale, 2011, 3(7):2801-2718.
|
[4] |
TROJER M A, NORDSTIERNA L, NORDIN M, et al. Encapsulation of actives for sustained release[J]. Physical Chemistry Chemical Physics, 2013, 15:17727-17741.
|
[5] |
VALLET-REGI M, RAMILA A, DEL R R P, et al. A new property of MCM-41:drug delivery system[J]. Chemistry of Materials, 2001, 13(2):308-311.
|
[6] |
TIANABC Y, KONGD Y, LIG X, et al. Light and pH-activated intracellular drug release from polymeric mesoporous silica nanoparticles[J]. Colloids and Surfaces B Biointerfaces, 2015, 134:147-155.
|
[7] |
GUO W, YANG C, CUI L, et al. An enzyme-responsive controlled release system of mesoporous silica coated with Konjac oligosaccharide[J]. Langmuir, 2014, 30(1):243-249.
|
[8] |
ALBERTI S, SOLER I G J A A, AZZARONI O. Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures:controlled delivery and molecular transport in response to chemical, physical and biological stimuli[J]. Chemical Communications, 2015, 51(28):6050-6075.
|
[9] |
CHEN F, JIANG, X P, KUAN T R, et al. Polyelectrolyte/mesoporous silica hybrid materials for the high performance multiple-detection of pH value and temperature[J]. Polymer Chemistry, 2015, 6(18):3529-3536.
|
[10] |
YUAN L, TANG Q, YANG D, et al. Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery[J]. The Journal of Physical Chemistry C, 2011, 115(20):9926-9932.
|
[11] |
BILALIS P, TZIBELEKA L, VARLASA S, et al. pH-Sensitive nanogates based on poly(L-histidine) for controlled drug release from mesoporous silica nanoparticles[J]. Polymer Chemistry, 2016, 7(7):1475-1485.
|
[12] |
POURJAVADI A, TEHRANI Z M, BENNETT C. PEG-co-polyvinyl pyridine coated magnetic mesoporous silica nanoparticles for pH-responsive controlled release of doxorubicin[J]. International Journal of Polymeric Materials, 2015, 64(11):570-577.
|
[13] |
郭月月, 白诗扬, 孙继红. pH敏感型双模型介孔SiO2的制备及其对布洛芬的缓控释性能[J]. 石油学报(石油加工), 2014, 30(1):181-186. GUO Y Y, BAI S Y, SUN J H. Preparation of pH-responsive bimodal mesoporous silicas and their performances in controlled ibuprofen delivery[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2014, 30(1):181-186.
|
[14] |
WIBOWO D, ZHA C X, PETERS B C, et al. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules[J]. Journal of Agricultural and Food Chemistry, 2014, 62(52):12504-12511.
|
[15] |
PRADO A G S, MOURA A O, NUNES A R. Nanosized silica modified with carboxylic acid as support for controlled release of herbicides[J]. Journal of Agricultural and Food Chemistry, 2011, 59(16):8847-8852.
|
[16] |
WAN M M, YANG J Y, QIU Y,et al. Sustained release of heparin on enlarged-pore and functionalized MCM-41[J]. Applied Materials & Interfaces, 2012, 4(8):4113-4122.
|
[17] |
彭仁忠. 控制释放技术在植物病虫害防治中的应用[J]. 北京农业, 2014, (15):112. PENG R Z. Application of controlled release technology in the control of plant diseases and insect pests[J]. Beijing Agriculture, 2014, (15):112.
|
[18] |
GAURAV J, ANOOP N, ABDUR R, et al. Fluoride ion sensing in aqueous medium by employing nitrobenzoxadiazole-postgrafted mesoporous silica nanoparticles (MCM-41)[J]. Physical Chemistry Chemical Physics, 2015, 17(5):3525-3533.
|
[19] |
GU J, FAN W, SHIMOJIMA A, et al. Organic-inorganic mesoporous nanocarriers integrated with biogenic ligands[J]. Small, 2007, 3(10):1740-1744.
|
[20] |
ROSTAMIZADEH S, NOJAVAN M. An environmentally benign multicomponent synthesis of some novel 2-methylthio pyrimidine derivatives using MCM-41-NH2 as nanoreactor and nanocatalyst[J]. Journal of Heterocyclic Chemistry, 2014, 51(2):418-422.
|
[21] |
林粤顺, 周新华, 周红军, 等. 毒死蜱/羽毛蛋白/海藻酸钠复合微球的制备及其缓释性能)[J]. 农药, 2014, 30(12):892-896, 911. LIN Y S, ZHOU X H, ZHOU H J, et al. Preparation and slow-release performance of chlorpyrifos/feather keratin/sodium alginate microspheres[J]. Agrochemicals, 2014, 30(12):892-896, 911.
|
[22] |
ZENG W, QIAN X, YIN J, et al. The drug delivery system of MCM-41 materials via co-condensation synthesis[J]. Materials Chemistry and Physics, 2006, 97(2/3):437-441.
|
[23] |
HARTONO S B, QIAO S Z, JACK K, et al. Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption[J]. Langmuir, 2009, 25(11):6413-6424.
|
[24] |
岳林海, 金达莱. 两亲PS-b-PAA共聚物水溶液中球形碳酸钙复合物的合成及其热分解性质[J]. 科学通报, 2004, 49(1):61-64. YUE L H, JIN D L. Synthesis and thermal decomposition properties of spherical calcium carbonate complex in aqueous solution of amphiphilic PS-b-PAA[J]. Chinese Science Bulletin, 2004, 49(1):61-64.
|
[25] |
周细应, 李卫红, 何亮. 纳米颗粒的分散稳定性及其评估方法[J]. 材料保护, 2006, 39(6):51-54. ZHOU X Y, LI W H, HE L. Dispersion stability of nanoparticles and its evaluation methods[J]. Materials Protection, 2006, 39(6):51-54.
|
[26] |
DASH S, MURTHY P N, NATH L, et al. Kinetic modeling on drug release from controlled drug delivery systems[J]. Acta Poloniae Pharmaceutica-Drug Research, 2010, 67(3):217-223.
|
[27] |
HONG C Y, LI X, PAN C Y. Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release[J]. Journal of Materials Chemistry, 2009, 19(29):5155-5160.
|