[1] |
李宏光, 臧灏. 管式加热炉多模型神经网络预测控制[J]. 控制工程, 2012, 19(4):650-653. LI H G, ZANG H. Multi-model adaptive neural network based predictive control of furnace[J]. Control Engineering of China, 2012, 19(4):650-653.
|
[2] |
ZHANG X X, XU J, ZHANG S, et al. Experiment on parameter identification of a time delay coupled nonlinear system[J]. IFAC Papersonline, 2015, 48(11):694-699.
|
[3] |
SZMIT M, SZMIT A. Use of holt-winters method in the analysis of network traffic case study[J]. Communications in Computer & Information Science, 2011, 160:224-231.
|
[4] |
ROSSI M, BRUNELLI D. Forecasting data centers power consumption with the Holt-Winters method[C]//Process of IEEE Workshop on Environmental, Energy and Structural Monitoring Systems IEEE, 2015:210-214.
|
[5] |
PRAVILOVIC S, APPICE A, MALERBA D. Integrating Cluster Analysis to the ARIMA Model for Forecasting Geosensor Data[M]. Foundations of Intelligent Systems, 2014:234-243.
|
[6] |
王锋, 李宏光, 臧灏. 基于Logistic和ARMA模型的过程报警预测[J]. 化工学报, 2012, 63(9):2941-2947. WANG F, LI H G, ZANG H. Process alarm prognosis based on Logistic and ARMA models[J]. CIESC Journal, 2012, 63(9):2941-2947.
|
[7] |
LENG X Z, WANG J H, JI H B, et al. Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses[J]. Chemosphere, 2017, 180:513.
|
[8] |
WANG L, TING M F, CHAPMAN D, et al. Prediction of northern summer low-frequency circulation using a high-order vector auto-regressive model[J]. Climate Dynamics, 2015, 46:1-17.
|
[9] |
LIU Y K, XIE F, XIE C L, et al. Prediction of time series of NPP operating parameters using dynamic model based on BP neural network[J]. Annals of Nuclear Energy, 2015, 85:566-575.
|
[10] |
LI G, SHI J, ZHOU J Y. Bayesian adaptive combination of short-term wind speed forecasts from neural network models[J]. Renewable Energy, 2011, 36(1):352-359.
|
[11] |
ATIYA A F, EL-SHOURA S M, SHAHEEN S I, et al. A comparison between neural-network forecasting techniques-case study:river flow forecasting[J]. IEEE Transactions on Neural Networks, 1999, 10(2):402-409.
|
[12] |
CHEVILLON G. Direct multi-step estimation and forecasting[J]. Journal of Economic Surveys, 2007, 21(4):746-785.
|
[13] |
XIAO Q K, XING L, SONG G. Time series prediction using optimal theorem and dynamic Bayesian network[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(23):11063-11069.
|
[14] |
BONTEMPI G. Long term time series prediction with multi-input multi-output local learning[J]. Proceedings of European Symposium on Time, 2008:145-154.
|
[15] |
SORJAMAA A, LENDASSE A. Time series prediction using dirrec strategy[C]//Esann 2006, European Symposium on Artificial Neural Networks, Bruges, Belgium, Proceedings. DBLP, 2006:143-148.
|
[16] |
YANG F, DUAN P, SHAH S L, et al. Capturing connectivity and causality in complex industrial processes[C]//Springer Publishing Company, Incorporated, 2014:45-46.
|
[17] |
YAN H, ZHANG Y P, YANG Q. Time-delay estimation based on cross-correlation and wavelet denoising[C]//Chinese Intelligent Automation Conference, 2013:841-848.
|
[18] |
PERSON R S, MISHIN L N. Auto-and cross-correlation analysis of the electrical activity of muscles[J]. Medical & Biological Engineering & Computing, 1964, 2(2):155.
|
[19] |
SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117.
|
[20] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems, 2012:1097-1105.
|
[21] |
SOUTNER D, MÜLLER L. Application of LSTM Neural Networks in Language Modelling[M]. Text, Speech, and Dialogue. Springer Berlin Heidelberg, 2013:105-112.
|
[22] |
MORTON J, WHEELER T A, KOCHENDERFER M J. Analysis of recurrent neural networks for probabilistic modeling of driver behavior[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 99:1-10.
|
[23] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single shot multibox detector[C]//European Conference on Computer Vision. Springer International Publishing, 2016:21-37.
|
[24] |
GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision. IEEE Computer Society, 2015:1440-1448.
|
[25] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 39(6):1137.
|
[26] |
段艳杰, 吕宜生, 张杰, 等. 深度学习在控制领域的研究现状与展望[J]. 自动化学报, 2016, 42(5):643-654. DUAN Y J, LÜ Y S, ZHANG J, et al. Deep learning for control:the state of the art and prospects[J]. Acta Automatica Sinica, 2016, 42(5):643-654.
|
[27] |
韩改堂, 乔俊飞, 韩红桂. 基于递归模糊神经网络的污水处理控制方法[J]. 化工学报, 2016, 67(3):954-959. HAN G L, QIAO J W, HAN H G. Wastewater treatment control method based on recurrent fuzzy neural network[J]. CIESC Journal, 2016, 67(3):954-959.
|
[28] |
ZHU Q X, JIA Y W, PENG D, et al. Study and application of fault prediction methods with improved reservoir neural networks[J]. Chinese Journal of Chemical Engineering, 2014, 22(7):812-819.
|
[29] |
POUL A K, SOLEIMANI M, SALAHI S. Solubility prediction of disperse dyes in supercritical carbon dioxide and ethanol as co-solvent using neural network[J]. Chinese Journal of Chemical Engineering, 2016, 24(4):491-498.
|
[30] |
HE Y L, XU Y, ZHAO Z Q, et al. Soft sensor of chemical processes with large numbers of input parameters using auto-associative hierarchical neural network[J]. Chinese Journal of Chemical Engineering, 2015, 23(1):138-145.
|
[31] |
安爱民, 刘云利, 张浩琛, 等. 微生物燃料电池的动态性能分析及其神经网络预测控制[J]. 化工学报, 2017, 68(3):1090-1098. AN A M, LIU Y L, ZHANG H T, et al. Dynamic performance analysis and neural network predictive control of microbial fuel cell[J]. CIESC Journal, 2017, 68(3):1090-1098.
|
[32] |
SEDKI A, OUAZAR D, MAZOUDI E E. Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting[J]. Expert Systems with Applications, 2009, 36(3):4523-4527.
|
[33] |
ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50:159-175.
|