化工学报 ›› 2017, Vol. 68 ›› Issue (9): 3501-3510.DOI: 10.11949/j.issn.0438-1157.20170197

• 过程系统工程 • 上一篇    下一篇

基于关联变量时滞分析卷积神经网络的生产过程时间序列预测方法

张浩1, 刘振娟1, 李宏光1, 杨博1, 路洁2   

  1. 1 北京化工大学信息科学与技术学院, 北京 100029;
    2 中国自动化控制系统总公司, 北京 100026
  • 收稿日期:2017-02-28 修回日期:2017-06-01 出版日期:2017-09-05 发布日期:2017-09-05
  • 通讯作者: 李宏光

Process time series prediction based on application of correlated process variables to CNN time delayed analyses

ZHANG Hao1, LIU Zhenjuan1, LI Hongguang1, YANG Bo1, LU Jie2   

  1. 1 College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100020, China;
    2 China National Automation Control System Co., Beijing 100026, China
  • Received:2017-02-28 Revised:2017-06-01 Online:2017-09-05 Published:2017-09-05
  • Contact: 10.11949/j.issn.0438-1157.20170197

摘要:

生产过程通常具有大时滞、非线性、多变量耦合等特点,往往难以建立准确的时间序列预测模型。基于生产过程历史数据,提出了一种采用关联变量时滞分析卷积神经网络(CNN)的生产过程时间序列预测方法,首先选取合适的关联变量并对关联变量与输出进行时滞分析,然后利用时滞分析结果确定关联变量时间窗的大小,最后建立合适的CNN模型对时间序列进行预测。某反应精馏过程实验表明,此方法对于大时滞系统的长步长时间序列预测具有较好的准确性。

关键词: 神经网络, 预测, 关联变量, 时滞系统, 反应精馏

Abstract:

It is often difficult to establish models for accurate time series prediction, as a result of time delay, nonlinearity, and multi-variable coupling characteristics in production processes. A time series prediction method was proposed by applying correlated process variables to time delayed analysis of convolutional neural network (CNN). First, appropriate correlated variables were selected and time series were analyzed between these variables and outputs. Then, results of time series analysis were employed to determine length of temporal time windows of associated variables. Finally, appropriate CNN models were established for time series prediction. Experimental results of a reaction distillation process showed good accuracy in time series prediction of long time frame and large time-delay processes.

Key words: neural networks, prediction, correlated variable, time-delay system, reactive distillation

中图分类号: