化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1216-1227.DOI: 10.11949/0438-1157.20221474
收稿日期:
2022-11-10
修回日期:
2022-12-30
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
赵众
作者简介:
张江淮(1997—),男,硕士研究生,zjh9797@yeah.net
基金资助:
Jianghuai ZHANG(), Zhong ZHAO()
Received:
2022-11-10
Revised:
2022-12-30
Online:
2023-03-05
Published:
2023-04-19
Contact:
Zhong ZHAO
摘要:
碳三加氢反应器操作条件多变,并且存在级联反应,传统的手动操作配氢容易过加氢或漏炔,导致出口甲基乙炔(MA)和丙二烯(PD)浓度波动较大,还会影响催化剂的选择性和转化率。由于碳三加氢过程具有非线性、操作区域多变的特点,传统的基于线性模型的模型预测控制器在工业过程控制中存在较大的局限性。Hammerstein模型是一种将非线性稳态环节和线性动态环节串联的非线性模型,非常适合描述非线性工业对象且方便控制器设计。提出了一种基于Hammerstein模型的鲁棒最小协方差约束控制方法,Hammerstein模型的非线性稳态部分采用WaveARX神经网络逼近,并根据多操作点稳态输入输出数据进行辨识,通过机理分析辨识得到的操作点附近线性化模型作为线性动态部分,将非线性鲁棒控制问题转化为线性模型鲁棒约束控制和非线性环节求逆问题,基于Hammerstein模型的建模偏差,对模型输出偏差协方差上限进行约束并最小化,采用线性矩阵不等式求解出次优状态反馈控制律,再根据非线性部分的逆模型得到系统的控制输入,仿真及工业应用结果证实了所提方法的可行性和有效性。
中图分类号:
张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227.
Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application[J]. CIESC Journal, 2023, 74(3): 1216-1227.
操作点 | 出口MAPD浓度的 标准差 | 催化剂选择性的 标准差 |
---|---|---|
0.03%操作点 | 0.0067 | 1.74 |
0.05%操作点 | 0.0023 | 1.05 |
0.075%操作点 | 0.0048 | 1.16 |
表1 系统预测误差的标准差
Table 1 Standard deviation of system prediction error
操作点 | 出口MAPD浓度的 标准差 | 催化剂选择性的 标准差 |
---|---|---|
0.03%操作点 | 0.0067 | 1.74 |
0.05%操作点 | 0.0023 | 1.05 |
0.075%操作点 | 0.0048 | 1.16 |
控制方法 | ISE指标 | 超调量/% | 调节时间/s | ||
---|---|---|---|---|---|
输出1 | 输出2 | 输出1 | 输出2 | ||
所提方法 | 0.0531 | 3.10 | 2.62 | 3.22 | 529 |
线性MVC3 | 0.0589 | 3.19 | 6.18 | 3.56 | 626 |
非线性MPC | 0.0728 | 5.13 | 12.18 | 7.89 | 786 |
表2 三种控制器性能对比(0.05%操作点)
Table 2 Performance comparison of three controllers (0.05% operating point)
控制方法 | ISE指标 | 超调量/% | 调节时间/s | ||
---|---|---|---|---|---|
输出1 | 输出2 | 输出1 | 输出2 | ||
所提方法 | 0.0531 | 3.10 | 2.62 | 3.22 | 529 |
线性MVC3 | 0.0589 | 3.19 | 6.18 | 3.56 | 626 |
非线性MPC | 0.0728 | 5.13 | 12.18 | 7.89 | 786 |
控制方法 | ISE指标 | 超调量/% | 调节时间/s | ||
---|---|---|---|---|---|
输出1 | 输出2 | 输出1 | 输出2 | ||
所提方法 | 0.1338 | 15.69 | 2.56 | 2.96 | 756 |
线性MVC3 | 0.5570 | >31.30 | 2.72 | 8.85 | >1500 |
非线性MPC | 0.4032 | 25.36 | 10.68 | 6.43 | 1235 |
表3 三种控制器性能对比(0.03%操作点)
Table 3 Performance comparison of three controllers (0.03% operating point)
控制方法 | ISE指标 | 超调量/% | 调节时间/s | ||
---|---|---|---|---|---|
输出1 | 输出2 | 输出1 | 输出2 | ||
所提方法 | 0.1338 | 15.69 | 2.56 | 2.96 | 756 |
线性MVC3 | 0.5570 | >31.30 | 2.72 | 8.85 | >1500 |
非线性MPC | 0.4032 | 25.36 | 10.68 | 6.43 | 1235 |
操作方式 | 选择性均值/% | 选择性 标准差/% | 出口MAPD浓度均值/% | 出口MAPD浓度标准差 | 配氢比均值 | 配氢比标准差 |
---|---|---|---|---|---|---|
手动 | 70.70 | 3.56 | 0.0470 | 0.0182 | 1.53 | 0.032 |
自动 | 76.38 | 2.98 | 0.0489 | 0.0079 | 1.48 | 0.014 |
表4 先进控制投用前后反应器各项指标比较
Table 4 Comparison of reactor indexes before and after advanced control
操作方式 | 选择性均值/% | 选择性 标准差/% | 出口MAPD浓度均值/% | 出口MAPD浓度标准差 | 配氢比均值 | 配氢比标准差 |
---|---|---|---|---|---|---|
手动 | 70.70 | 3.56 | 0.0470 | 0.0182 | 1.53 | 0.032 |
自动 | 76.38 | 2.98 | 0.0489 | 0.0079 | 1.48 | 0.014 |
1 | Qian X, Jia S K, Luo Y Q, et al. Selective hydrogenation and separation of C3 stream by thermally coupled reactive distillation[J]. Chemical Engineering Research and Design, 2015, 99: 176-184. |
2 | Hotz A F, Skelton R E. A covariance control theory[J]. Control and Dynamic Systems, 1987, 26: 225-276. |
3 | Skelton R E, Ikeda M. Covariance controllers for linear continuous-time systems[J]. International Journal of Control, 2008, 49(5): 1773-1785. |
4 | Al-Jiboory A K, Zhu G M. Robust input covariance constraint control for uncertain polytopic systems[J]. Asian Journal of Control, 2016, 18(4): 1489-1500. |
5 | Bakolas E. Finite-horizon covariance control for discrete-time stochastic linear systems subject to input constraints[J]. Automatica, 2018, 91: 61-68. |
6 | Okamoto K, Goldshtein M, Tsiotras P. Optimal covariance control for stochastic systems under chance constraints[J]. IEEE Control Systems Letters, 2018, 2(2): 266-271. |
7 | Chmielewski D J, Manthanwar A M. On the tuning of predictive controllers: inverse optimality and the minimum variance covariance constrained control problem[J]. Industrial & Engineering Chemistry Research, 2004, 43(24): 7807-7814. |
8 | Baroumand S, Zaman A R, Mahmoudi M R. A covariance feedback approach to covariance control of nonlinear stochastic systems[J]. Complexity, 2020, 2020: 9580243. |
9 | Fiacchini M, Alamo T. Covariance control for discrete-time stochastic switched linear systems[J]. IFAC-PapersOnLine, 2022, 55(25): 139-144. |
10 | Baromand S, Labibi B. Covariance control for stochastic uncertain multivariable systems via sliding mode control strategy[J]. IET Control Theory & Applications, 2012, 6(3): 349-356. |
11 | Zhang Q C. Parametric co-variance assignment for a class of multivariable stochastic uncertain systems: output feedback stabilization approach[J]. Advances in Science, Technology and Engineering Systems Journal, 2018, 3(5): 45-51. |
12 | Hou J, Liu T, Wahlberg B, et al. Subspace Hammerstein model identification under periodic disturbance[J]. IFAC-PapersOnLine, 2018, 51(15): 335-340. |
13 | Ławryńczuk M, Tatjewski P. Offset-free state-space nonlinear predictive control for Wiener systems[J]. Information Sciences, 2020, 511: 127-151. |
14 | Wang Y J, Tang S H, Gu X B. Parameter estimation for nonlinear Volterra systems by using the multi-innovation identification theory and tensor decomposition[J]. Journal of the Franklin Institute, 2022, 359(2): 1782-1802. |
15 | Khani F, Haeri M. Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models[J]. Chemical Engineering Science, 2015, 129: 223-231. |
16 | H D, Chanfreut P, Maestre J M. A nonlinear distributed model predictive scheme for systems based on Hammerstein model[J]. IFAC-PapersOnLine, 2020, 53(2): 3361-3366. |
17 | Quachio R, Garcia C. MPC relevant identification method for Hammerstein and Wiener models[J]. Journal of Process Control, 2019, 80: 78-88. |
18 | Zhang Q, Wang Q J, Li G L. Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 383-394. |
19 | Wang H K, Zhao J, Xu Z H, et al. Linear model predictive control for Hammerstein system with unknown nonlinearities[J]. IFAC Proceedings Volumes, 2013, 46(13): 302-306. |
20 | Du J J, Zhang L, Chen J F, et al. Self-adjusted decomposition for multi-model predictive control of Hammerstein systems based on included angle[J]. ISA Transactions, 2020, 103: 19-27. |
21 | Ding B C, Wang J, Su B J. Output feedback model predictive control for Hammerstein model with bounded disturbance[J]. IET Control Theory & Applications, 2022, 16(10): 1032-1041. |
22 | 卫国宾, 王勇, 易水生, 等. 新负载型碳三液相加氢催化剂的开发和工业应用[J]. 化工进展, 2018, 37(12): 4948-4952. |
Wei G B, Wang Y, Yi S S, et al. Development and industry application of new supported catalyst for C3 fraction liquid phase hydrogenation[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4948-4952. | |
23 | Wu W, Shao B, Zhou X G. Dynamic control of a selective hydrogenation process with undesired MAPD impurities in the C3-cut streams[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 54: 28-36. |
24 | Mary G, Esmaeili A, Chaouki J. Simulation of the selective hydrogenation of C3-cut in the liquid phase[J]. International Journal of Chemical Reactor Engineering, 2016, 14(4): 859-874. |
25 | 季江宁, 刘昆元, 赵秀红, 等. 碳三液相催化加氢动力学研究[J]. 石油化工设计, 2002, 19(1): 59-62. |
Ji J N, Liu K Y, Zhao X H, et al. Kinetics study on liquid phase catalytic hydrogenation of C3 [J]. Petrochemical Design, 2002, 19(1): 59-62. | |
26 | 李文江, 林思建, 王璇. 一种辨识Hammerstein模型的新方法[J]. 计量学报, 2015, 36(4): 418-422. |
Li W J, Lin S J, Wang X. New method for identification of Hammerstein model[J]. Acta Metrologica Sinica, 2015, 36(4): 418-422. | |
27 | Nakamura M, Goto S, Sugi T. A methodology for designing controllers for industrial systems based on nonlinear separation model and control[J]. Control Engineering Practice, 1999, 7(3): 347-356. |
28 | Zhao W X. Parametric identification of Hammerstein systems with consistency results using stochastic inputs[J]. IEEE Transactions on Automatic Control, 2010, 55(2): 474-480. |
29 | Suman M, Maity R. Hybrid Wavelet-ARX approach for modeling association between rainfall and meteorological forcings at river basin scale[J]. Journal of Hydrology, 2019, 577: 123918. |
30 | 张德慧, 张德育, 刘清云, 等. 基于粒子群算法的BP神经网络优化技术[J]. 计算机工程与设计, 2015, 36(5): 1321-1326. |
Zhang D H, Zhang D Y, Liu Q Y, et al. BP neural network optimized by improved PSO[J]. Computer Engineering and Design, 2015, 36(5): 1321-1326. | |
31 | Zhang Z B, Jiang Y Z, Zhang S H, et al. An adaptive particle swarm optimization algorithm for reservoir operation optimization[J]. Applied Soft Computing, 2014, 18: 167-177. |
32 | Wang D Q, Zhang W. Improved least squares identification algorithm for multivariable Hammerstein systems[J]. Journal of the Franklin Institute, 2015, 352(11): 5292-5307. |
33 | Nakamura M, Goto S, Sugi T. A methodology for designing controllers for industrial systems based on nonlinear separation model and control[J]. Control Engineering Practice, 1999, 7(3): 347-356. |
34 | 俞立. 鲁棒控制: 线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002: 6-14. |
Yu L. Robust Control: a Method to Deal with Linear Matrix Inequalities[M]. Beijing: Tsinghua University Press, 2002: 6-14. | |
35 | Jafari M R, Arefi M M, Panahi M. Convex reformulations for self-optimizing control optimization problem: linear matrix inequality approach[J]. Journal of Process Control, 2022, 116: 172-184. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[5] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[6] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[9] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[10] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[11] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[12] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[13] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[14] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[15] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 336
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 251
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||