化工学报 ›› 2018, Vol. 69 ›› Issue (6): 2364-2372.DOI: 10.11949/j.issn.0438-1157.20171466
李立欣1,2, 张斯3, 王冬1, 马放2
收稿日期:
2017-11-02
修回日期:
2018-02-04
出版日期:
2018-06-05
发布日期:
2018-06-05
通讯作者:
马放
基金资助:
国家自然科学基金项目(51678222,51408200,51408618,51478140);哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金项目(ES201803);哈尔滨市科技创新人才研究专项基金项目(2015RQQXJ015)。
LI Lixin1,2, ZHANG Si3, WANG Dong1, MA Fang2
Received:
2017-11-02
Revised:
2018-02-04
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the National Natural Science Foundation of China (51678222,51408200, 51408618, 51478140), the Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (ES201803) and the Special Fund for Science and Technology Innovation Talents of Harbin(2015RQQXJ015).
摘要:
菌丝球是在一定培养条件下形成的一种微生物聚集体,具有代谢能力强、吸附污染物量大等特点,同时还具有生物活性高、沉降速度快、易于固液分离等特性。近年来已成为国内外生物工程、环境保护等领域的研究热点。论述了菌丝球的特性、形成机理、形成条件及优化培养,详细介绍了菌丝球在水污染控制、工业发酵生产以及经济微藻回收等领域的应用。在此基础上,剖析了目前菌丝球研究工作中存在的问题,提出了今后菌丝球研究的主要发展趋势。
中图分类号:
李立欣, 张斯, 王冬, 马放. 真菌菌丝球研究进展[J]. 化工学报, 2018, 69(6): 2364-2372.
LI Lixin, ZHANG Si, WANG Dong, MA Fang. Recent progress on mycelial pellet[J]. CIESC Journal, 2018, 69(6): 2364-2372.
[1] | 刘效梅, 辛宝平, 徐文国. 微生物颗粒在废水处理中的应用与研究[J]. 工业水处理, 2005, 25(8):1-4. LIU X M, XIN B P, XU W G. Researches on application of microbial granule to wastewater treatment[J]. Industrial Water Treatment, 2005, 25(8):1-4. |
[2] | BEROVIC M, CIMERMAN A, STEINER W, et al. Submerged citric acid fermentation:rheological properties of Aspergillus niger broth in a stirred tank reactor[J]. Applied Microbiology and Biotechnology, 1991, 34(5):579-581. |
[3] | KIM J H, LEBEAULT J M, REUSS M. Comparative study on rheological properties of mycelial broth in filamentous and pelleted forms[J]. Applied Microbiology and Biotechnology, 1983, 18(1):11-16. |
[4] | ZHOU Y, DU J, TSAO G T. Mycelial pellet formation by Rhizopus oryzae ATCC 20344[J]. Applied Biochemistry and Biotechnology, 2000, 84(1):779-789. |
[5] | WUCHERPFENNIG T, KIEP K A, DRIOUCH H, et al. Morphology and rheology in filamentous cultivations[J]. Advances in Applied Microbiology, 2010, 72:89-136. |
[6] | KELLY S, GRIMM L H, HENGSTLER J, et al. Agiation effects on submerged growth and product formation of Aspergillus niger[J]. Bioprocess and Biosystems Engineering, 2004, 26(5):315-323. |
[7] | 黄锦丽, 龙敏南, 傅雅捷, 等. 产酸克雷伯氏菌的吸附固定及其产氢研究[J]. 厦门大学学报(自然科学版), 2005, 44(5):710-713. HUANG J L, LONG M N, FU Y J, et al. Studies on the biosorption and hydrogen production of Klebsiella oxytoca HP1[J]. Journal of Xiamen University(Natural Science Edition), 2005, 44(5):710-713. |
[8] | 赵立军, 马放, 山丹, 等. 曲霉菌丝球Y3对细菌的固定化效能[J]. 江苏大学学报(自然科学版), 2007, 28(5):446-449. ZHAO L J, MA F, SHAN D, et al. Immobilized effect of bacteria by mycelial pellet of Penicillum Y3[J]. Journal of Jiangsu University (Natural Science Edition), 2007, 28(5):446-449. |
[9] | 曹晓婷, 熊小京, 郑天凌, 等. 黑曲霉菌丝球对直接耐晒翠蓝FBL的脱色特性[J]. 华侨大学学报(自然科学版), 2008, 29(1):34-37. CAO X T, XIONG X J, ZHENG T L, et al. Decolorization behavior of C. I. Direct Blue 199 by Aspergillus niger mycelium pellet[J]. Journal of Huaqiao University(Natural Science Edition), 2008, 29(1):34-37. |
[10] | BHATTACHARYA A, MATHUR M, KUMAR P, et al. A rapid method for fungal assisted algal flocculation:critical parameters & mechanism insights[J]. Algal Research, 2017, 21:42-51. |
[11] | 张斯. 菌丝球生物载体的构建及其强化废水处理效能研究[D]. 哈尔滨:哈尔滨工业大学, 2011. ZHANG S. Research on construction and enhanced wastewater treatment efficiency of mycelial pellet as a biomass carrier[D]. Harbin:Harbin Institute of Technology, 2011. |
[12] | HOSOBUCHI M, OGAWA K, YOSHIKAWA H. Morphology study in production of ML-236B, a precursor of pravastatin sodium by Penicillium citrinum[J]. Journal of Fermentation & Bioengineering, 1993, 76(6):470-475. |
[13] | HILLE A, NEU T R, HEMPEL D C, et al. Oxygen profiles and biomass distribution in biopellets of Aspergillus niger[J]. Biotechnology & Bioengineering, 2005, 92(5):614-623. |
[14] | CUI Y Q, VAN DER LANS R G J M, LUYBEN K C A M. Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation[J]. Biotechnology & Bioengineering, 1998, 57(4):409-419. |
[15] | SILVA E M E, GUTIERREZ G F, DENDOOVEN L, et al. A method to evaluate the isothermal effectiveness factor for dynamic oxygen into mycelial pellets in submerged cultures[J]. Biotechnology Progress, 2001, 17(1):95-103. |
[16] | LEJEUNE R, BARON G V. Simulation of growth of a filamentous fungus in 3 dimensions[J]. Biotechnology & Bioengineering, 1997, 53(2):139-150. |
[17] | HILLE A, NEU T, HEMPEL D, et al. Effective diffusivities and mass fluxes in fungal biopellets[J]. Biotechnology & Bioengineering, 2009, 103(6):1202-1213. |
[18] | 高敏. 生物质载体菌丝球的形成机制及脱色效能的研究[D]. 哈尔滨:哈尔滨工业大学, 2006. GAO M. The research of formation mechanics and discolouration of biological carrier pellet[D]. Harbin:Harbin Institute of Technology, 2006. |
[19] | 张一竹, 王清祺, 刘剑书, 等. 真菌菌丝球形成的自组织机理[J]. 生物技术, 2002, 12(6):27-28. ZHANG Y Z, WANG Q Q, LIU J S, et al. Self-organization mechanism of the formation of fungi mycelial pellet[J]. Biotechnology, 2002, 12(6):27-28. |
[20] | ?NIDARSIC P, KOMEL R, PAVKO A. Studies of a pelleted growth form of Rhizopus nigricans as a biocatalyst of progesterone 11α-hydroxylation[J]. Journal of Biotechnology, 1998, 60(3):207-216. |
[21] | 朱虹. 菌丝球形成过程及其影响因素的研究[D]. 哈尔滨:哈尔滨工业大学, 2007. ZHU H. Study on formation process and cultivating conditions of mycelial pellets[D]. Harbin:Harbin Institute of Technology, 2007. |
[22] | 陆涛. 海洋黑曲霉菌丝球的形成机理及其对含染料废水的脱色作用[D]. 杭州:浙江大学, 2016. LU T. The pellet-formation mechanism of marine-derived Aspergillus niger and its applications in dye-wastewater treatment[D]. Hangzhou:Zhejiang University, 2016. |
[23] | KOSSEN N W. The morphology of filamentous fungi[J]. Advances in Biochemical Engineering/Biotechnology, 2000, 70:1-33. |
[24] | 张泽生, 史佳宁, 商蕊. 桦褐孔菌菌丝体深层培养条件优化的研究[J]. 食品研究与开发, 2009, 30(10):49-53. ZHANG Z S, SHI J N, SHANG R. Optimization of the fermenting conditions for accumulation mycelium of Inonotus obliquus liquor in submerged fermentation[J]. Food Research and Development, 2009, 30(10):49-53. |
[25] | 卢惠妮, 潘迎捷, 赵勇, 等. 棘托竹荪菌丝体培养基碳源?氮源?无机盐的筛选[J]. 食品工业科技, 2010, 31(2):178-181. LU H N, PAN Y J, ZHAO Y, et al. Screening of carbon and nitrogen sources, inorganic salts for the medium of Dictyophora echinovolvata mycelia[J]. Science and Technology of Food Industry, 2010, 31(2):178-181. |
[26] | 苏珏, 贺新生, 竹文坤. 柏树火焰层孔菌菌丝体发酵工艺条件优化[J]. 食品科学, 2010, 31(23):146-150. SU J, HE X S, ZHU W K. Optimization of culture conditions for the mycelial growth of Pyrofomes demidoffii[J]. Food Science, 2010, 31(23):146-150. |
[27] | CHO Y J, HWANG H J, SANG W K, et al. Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor[J]. Journal of Biotechnology, 2002, 95(1):13-23. |
[28] | JONSBU E, MCLNTYRE M, NIELSEN J. The influence of carbon sources and morphology on nystatin production by Streptomyces noursei[J]. Journal of Biotechnology, 2002, 95(2):133-144. |
[29] | 马放, 张斯, 山丹. 黑曲霉Y3菌丝球培养基成分优化[J]. 中国环境科学, 2008, 28(11):989-993. MA F, ZHANG S, SHAN D. Optimization of the medium composition for culturing of mycelia pellet of Aspergillus niger Y3[J]. China Environmental Science, 2008, 28(11):989-993. |
[30] | SARASWATHY A, HALLBERG R. Mycelial pellet formation by Penicilliumochr ochloron species due to exposure to pyrene[J]. Microbiological Research, 2005, 160(4):375-383. |
[31] | PARK E Y, KOIKE Y, HIGASHIYAMA K, et al. Effect of nitrogen source on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina[J]. Journal of Bioscience & Bioengineering, 1999, 88(1):61-67. |
[32] | KIM S W, XU C P, HWANG H J, et al. Production and characterization of exopolysaccharides from an enthomopathogenic fungus Cordycepsmilitaris NG3[J]. Biotechnology Progress, 2003, 19(2):428-435. |
[33] | KOIKE Y, CAI H J, HIGASHIYAMA K, et al. Effect of consumed carbon to nitrogen ratio of mycelial morphology and arachidonic acid production in cultures of Mortierella alpina[J]. Journal of Bioscience & Bioengineering, 2001, 91(4):382-389. |
[34] | HIGASHIYAMA K, YAGUCHI T, AKIMOTO K, et al. Effects of mineral addition on the growth morphology and arachidonic acid production by Mortierellaalpina 1S-4[J]. Journal of the American Oil Chemists Society, 1998, 75(12):1815-1819. |
[35] | ONCU S, TARI C, UNLUTURK S. Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor[J]. Biotechnology Progress, 2007, 23(23):836-845. |
[36] | MEDVEDEVA S E, ARTEMENKO K S, KRIVOSHEENKO A A, et al. Growth and light emission of luminous basidiomycetes cultivated on solid media and in submerged culture[J]. Mycosphere, 2014, 5(4):565-577. |
[37] | CUI Y Q, VAN DER LANS R G J M, LUYBEN K C A M. Effect of agitation intensities on fungal morphology of submerged fermentation[J]. Biotechnology & Bioengineering, 1997, 55(5):715-726. |
[38] | TAGUCHI H, YOSHIDA T, TOMITA Y, et al. The effects of agitation on disruption of the mycelial pellets in stirred fermentors[J]. Journal of Fermentation Technology, 1968, 46:814-822. |
[39] | BHAVARAJU S M, BLANCH H W. A model for pellet breakup in fungal fermentations[J]. Journal of Fermentation Technology, 1976, 54:466-468. |
[40] | SUIJDAM J C, METZ B. Fungal pellet breakup as a function of shear in a fermentor[J]. Journal of Fermentation Technology, 1981, 59:329-333. |
[41] | PAPAGIANNI M. Fungal morphology and metabolite production in submerged mycelial processes[J]. Biotechnology Advances, 2004, 22(3):189-259. |
[42] | BIZUKOJC M, LEDAKOWICZ S. Physiological, morphological and kinetic aspects of lovastatin biosynthesis by Aspergillus terreus[J]. Biotechnology Journal, 2009, 4(5):647-664. |
[43] | MAINWARING D O. Effect of pH on hen egg white lysozyme production and evolution of a recombinant strain of Aspergillus niger[J]. Journal of Biotechnology, 1999, 75:1-10. |
[44] | O`DONNELL D, WANG L, XU J, et al. Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity[J]. Biochemical Engineering Journal, 2001, 8(3):187-193. |
[45] | VATS P, SAHOO D K, BANERJEE U C. Production of phytase (myo-inositolhexakisphosphate phosphohydrolase) by Aspergillus niger van Teighem in laboratory-scale fermenter[J]. Biotechnology Progress, 2004, 20(3):737-743. |
[46] | GRIMM L H, KELLY S, KRULL R, et al. Morphology and productivity of filamentous fungi[J]. Applied Microbiology & Biotechnology, 2005, 69(4):375-384. |
[47] | KIM H M, PARK M K, YUN J W. Culture pH affects exopolysaccharide production in submerged mycelial culture of Ganoderma lucidum[J]. Applied Biochemistry & Biotechnology, 2006, 134(3):249-262. |
[48] | GRIMM L H, KELLY S, HENGSTLER J, et al. Kinetic studies on the aggregation of Aspergillus niger conidia[J]. Biotechnology & Bioengineering, 2004, 87(2):213-218. |
[49] | XU J, WANG L, RIDGWAY D, et al. Increased heterologous protein production in Aspergillus niger fermentation through extracellular proteases inhibition by pelleted growth[J]. Biotechnology Progress, 2000, 16(2):222-227. |
[50] | 马放, 张斯, 山丹, 等. 霉菌Y3菌丝球培养条件的优化[J]. 哈尔滨工业大学学报, 2009, 41(8):38-41. MA F, ZHANG S, SHAN D, et al. Optimization of culturing conditions for mucedine Y3 pellet[J]. Journal of Harbin Institute of Technology, 2009, 41(8):38-41. |
[51] | HIGASHIYAMA K, MURAKAMI K, TSUJIMURA H, et al. Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpine 1S-4[J]. Biotechnology & Bioengineering, 1999, 63(4):442-448. |
[52] | 王慕华, 徐宏英, 苏槟楠. 黑曲霉菌丝球还原水中六价铬的研究[J]. 科学技术与工程, 2010, 10(26):6472-6476. WANG M H, XU H Y, SU B N. Study on reduction of chromium(Ⅵ) in water by Aspergillus niger[J]. Science Technology and Engineering, 2010, 10(26):6472-6476. |
[53] | 王国惠. 霉菌菌丝球对重金属Cr(Ⅵ)的吸附特性[J]. 中山大学学报(自然科学版), 2007, 46(3):112-116. WANG G H. Adsorption of heavy metal chromium(Ⅵ) by mycelial pellets[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(3):112-116. |
[54] | 罗隽, 胡勇有, 仲海涛. 烟束曲霉菌丝球对Cr(Ⅵ)的去除-还原与吸附作用[J]. 环境科学学报, 2007, 27(10):1585-1592. LUO J, HU Y Y, ZHONG H T. Removal of Cr(Ⅵ) in solution by Aspergillus fumisynnematus mycelia:reduction and biosorption[J]. Acta Scientiae Circumstantiae, 2007, 27(10):1585-1592. |
[55] | 吴涓, 李清彪. 黄孢原毛平革菌吸附铅离子机理的研究[J]. 环境科学学报, 2001, 21(3):291-295. WU J, LI Q B. Study on mechanism of lead biosorption by Phanerochaete chrysosporium[J]. Acta Scientiae Circumstantiae, 2001, 21(3):291-295. |
[56] | MEYER A, WALLIS F M. The use of Aspergillus niger (Strain 4) biomass for lead uptake from aqueous systems[J]. Water SA, 1997, 23(2):187-192. |
[57] | 刘桂萍, 刘长风, 关丽杰, 等. 霉菌菌丝球对Pb2+的吸附研究[J]. 沈阳化工学院学报, 2005, 19(2):93-96. LIU G P, LIU C F, GUAN L J, et al. Study on biosorption of Pb2+ by mould hyphaball[J]. Journal of Shenyang Institute of Chemical Technology, 2005, 19(2):93-96. |
[58] | 李清彪, 吴涓, 杨宏泉, 等. 白腐真菌菌丝球形成的物化条件及其对铅的吸附[J]. 环境科学, 1999, 20(1):33-38. LI Q B, WU J, YANG H Q, et al. The effects of physical and chemical conditions on forming mycelial pellet of Phanerochaete chrysosporium and biosorption of lead[J]. Environmental Science, 1999, 20(1):33-38. |
[59] | ZHANG F M, KNAPP J S, TAPLEY K N. Development of bioreactor systems for decolorization of orange Ⅱ using white rot fungus[J]. Enzyme and Microbial Technology, 1998, 24(1/2):48-53. |
[60] | 朱勇, 马丽华, 戴兴春, 等. 白腐真菌膜生物反应器对活性染料废水的脱色效果[J]. 中国给水排水, 2007, 23(15):38-42. ZHU Y, MA L H, DAI X C, et al. Decolorizing effect of reactive dyeing wastewater by membrane bioreactor using white rot fungi[J]. China Water and Wastewater, 2007, 23(15):38-42. |
[61] | 程子彰, 杨洲平, 胡容, 等. 粗毛栓菌菌丝球非灭菌条件下对12种染料的脱色研究[J]. 菌物学报, 2012, 31(6):878-889. CHENG Z Z, YANG Z P, HU R, et al. Decolorization of 12 kinds of dyes by the mycelium pellets of Trametes gallica under non-sterile condition[J]. Mycosystema, 2012, 31(6):878-889. |
[62] | 王明霞. 海洋微紫青霉菌丝球的制备及其对染料吸附性能的研究[D]. 杭州:浙江大学, 2014. WANG M X. Preparation of marine Pecicillium janthinellum pellet and its application in biosorption of dyes[D]. Hangzhou:Zhejiang University, 2014. |
[63] | KAUSHIK P, MISHRA A, MALIK A, et al. Biosorption of textile dye by Aspergillus lentulus pellets:process optimization and cyclic removal in aerated bioreactor[J]. Water, Air & Soil Pollution, 2014, 225(6):1-13. |
[64] | WANG M X, ZHANG Q L, YAO S J. A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater[J]. Chemical Engineering Journal, 2015, 259:837-844. |
[65] | LU T, ZHANG Q L, YAO S J. Efficient decolorization of dye-containing wastewater using mycelial pellets formed of marine-derived Aspergillus niger[J]. Chinese Journal of Chemical Engineering, 2017, 25:330-337. |
[66] | LU T, ZHANG Q L, YAO S J. Removal of dyes from wastewater by growing fungal pellets in a semi-continuous mode[J]. Frontiers of Chemical Science & Engineering, 2017, 11(3):338-345. |
[67] | 山丹, 马放, 张斯, 等. 低温苯胺降解菌固定化菌丝球方法与特性[J]. 北京工业大学学报, 2008, 34(6):637-641. SHAN D, MA F, ZHANG S, et al. Characteristic and immobilized mycelial pellets method of aniline-degradation bacteria at low temperature[J]. Journal of Beijing University of Technology, 2008, 34(6):637-641. |
[68] | LI L X, FENG L Y, MA F, et al. Establishment and efficiency of mycelial pellet-microalgae coupled system for treatment of domestic sewage[J]. Basic & Clinical Pharmacology & Toxicology, 2017, 121(S5):3-40. |
[69] | ZHANG S, LI A, CUI D, et al. Performance of enhanced biological SBR process for aniline treatment by mycelial pellet as biomass carrier[J]. Bioresource Technology, 2011, 102:4360-4365. |
[70] | ZHANG S, LI A, CUI D, et al. Biological improvement on combined mycelial pellet for aniline treatment by tourmaline in SBR process[J]. Bioresource Technology, 2011, 102:9282-9285. |
[71] | 董怡华, 冯治宇, 张玉革, 等. 菌丝球吸附光合细菌形成混合菌丝球的方法:201310151702. 5[P]. 2013-08-21. DONG Y H, FENG Z Y, ZHANG Y G, et al. A method for the formation of mixed mycelial pellet by adsorbing photosynthetic bacteria:201310151702. 5[P]. 2013-08-21. |
[72] | 董怡华, 冯治宇, 林静雯, 等. 一种利用菌丝球作为生物载体固定化光合细菌的方法:201210189557. 5[P]. 2012-10-03. DONG Y H, FENG Z Y, LIN J W, et al. A method for immobilizing photosynthetic bacteria using mycelial pellet as a biological carrier:201210189557. 5[P]. 2012-10-03. |
[73] | 董怡华, 李鹏, 何江海, 等. 两种方法形成菌丝球固定2-氯酚降解菌的对比[J]. 微生物学报, 2016, 56(5):753-764. DONG Y H, LI P, HE J H, et al. Comparison of two mycelial pellets formation methods to immobilize o-chlorophenol degradation bacteria[J]. Acta Microbiologica Sinica, 2016, 56(5):753-764. |
[74] | CHEN H Y, WANG M X, SHEN Y B, et al. Optimization of two-species whole-cell immobilization system constructed with marine-derived fungi and its biological degradation ability[J]. Chinese Journal of Chemical Engineering, 2014, 22:187-192. |
[75] | JONGH W A. Organic acid production by Aspergillus niger[D]. Copenhagen:Technical University of Denmark, 2006. |
[76] | VECHT-LIFSHITZ S E, SASSON Y, BRAUN S. Nikkomycin production in pellets of Streptomyces tendae[J]. Journal of Applied Bacteriology, 1992, 72(3):195-200. |
[77] | TRIPATHI C K, RASTOGI S, BIHARI V, et al. Production of calcium gluconate by fermentation[J]. Indian Journal of Experimental Biology, 1999, 37(7):731-733. |
[78] | VAN WEZEL G P, KRABBEN P. TRAAG B A, et al. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering[J]. Applied and Environmental Microbiology, 2006, 72(8):5283-5288. |
[79] | 马放, 王金娜, 李昂, 等. 一种以菌丝球为载体发酵生物絮凝剂的方法:201110173489. 9[P]. 2011-11-30. MA F, WANG J N, LI A, et al. A method for fermenting bioflocculant with the mycelial pellet as the carrier:201110173489. 9[P]. 2011-11-30. |
[80] | 张笑晨. 菌丝球为载体的固定化发酵生产生物絮凝剂的技术研究[D]. 哈尔滨:哈尔滨工业大学, 2012. ZHANG X C. Production technology of bioflocculant using bioflocculant-producing bacteria immobilized by mycelial pellets[D]. Harbin:Harbin Institute of Technology, 2012. |
[81] | LV J, ZHANG B B, LIU X D, et al. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture:the relationship between fermentation conditions and mycelial morphology[J]. Journal of Bioscience and Bioengineering, 2017, 124(4):452-458. |
[82] | 李广悦, 刁宁宁, 王永东, 等. 菌丝球形态的黑曲霉发酵液浸出铜尾砂[J]. 化工学报, 2015, 66(2):717-722. LI G Y, DIAO N N, WANG Y D, et al. Bioleaching of copper from tailings by fermentation broths of Aspergillus niger in pellet form[J]. CIESC Journal, 2015, 66(2):717-722. |
[83] | MEHTA K D, DAS C, PANDEY B D. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger[J]. Hydrometallurgy, 2010, 105(1):89-95. |
[84] | NOUREN S, BHATTI H N, ILYAS S. Bioleaching of copper, aluminum, magnesium and manganese from brown shale by Ganoderma lucidum[J]. African Journal of Biotechnology, 2013, 10(52):10664-10673. |
[85] | ZHANG J G, HU B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets[J]. Bioresource Technology, 2012, 114:529-535. |
[86] | ZHOU W G, CHENG Y L, LI Y, et al. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment[J]. Applied Biochemistry and Biotechnology, 2012, 167(2):214-228. |
[87] | PRAJAPATI S K, KUMAR P, MALIK A, et al. Exploring pellet forming filamentous fungi as tool for harvesting non-flocculating unicellular microalgae[J]. Bioenergy Research, 2014, 7(4):1430-1440. |
[88] | MURADOV N, TAHA M, MIRANDA A F, et al. Fungal-assisted algal flocculation:application in wastewater treatment and biofuel production[J]. Biotechnology for Biofuels, 2015, 8(1):24. |
[89] | LI Y, XU Y T, ZHENG T L, et al. Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris[J]. Bioresource Technology, 2017, 239:137-143. |
[90] | NYMAN J, LACINTRA M G, WESTMAN J O, et al. Pellet formation of zygomycetes and immobilization of yeast[J]. New Biotechnology, 2013, 30(5):516-522. |
[91] | 刁宁宁, 钱柳伊, 张建国, 等. 黑曲霉菌丝球吸附毕赤酵母的条件优化[J]. 工业微生物, 2015, 45 (4):7-11. DIAO N N, QIAN L Y, ZHANG J G, et al. Optimization of conditions for Aspergillus niger pellets adsorbing Pichia pastoris[J]. Industrial Microbiology, 2015, 45 (4):7-11. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[3] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[4] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[5] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[6] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[7] | 许万, 陈振斌, 张慧娟, 牛昉昉, 火婷, 刘兴盛. 线性温敏性聚合物嵌段调控的 |
[8] | 马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究[J]. 化工学报, 2022, 73(9): 4103-4112. |
[9] | 罗欣宜, 冯超, 刘晶, 乔瑜. 污泥不同热处理工艺产物磷的浸出回收实验研究[J]. 化工学报, 2022, 73(9): 4034-4044. |
[10] | 王悦琳, 晁伟, 蓝晓程, 莫志朋, 佟淑环, 王铁峰. 合成气生物发酵法制乙醇的研究进展[J]. 化工学报, 2022, 73(8): 3448-3460. |
[11] | 戚新刚, 路利波, 陈渝楠, 葛志伟, 郭烈锦. 造纸黑液超临界水气化制氢与高附加值化学品回收研究进展[J]. 化工学报, 2022, 73(8): 3338-3354. |
[12] | 杨双桥, 韦宝杰, 徐大伟, 李莉, 王琪. 铝塑复合包装的应用及废弃物回收利用新技术[J]. 化工学报, 2022, 73(8): 3326-3337. |
[13] | 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
[14] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
[15] | 童海航, 石德智, 刘嘉宇, 蔡桦伊, 罗丹, 陈飞. 金属纳米颗粒辅助木质纤维素暗发酵生物制氢的研究进展[J]. 化工学报, 2022, 73(4): 1417-1435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||