化工学报 ›› 2018, Vol. 69 ›› Issue (6): 2353-2363.DOI: 10.11949/j.issn.0438-1157.20171596
纪瑞军1,2, 徐文青1, 王健1, 严超宇2, 朱廷钰1
收稿日期:
2017-12-01
修回日期:
2018-02-24
出版日期:
2018-06-05
发布日期:
2018-06-05
通讯作者:
朱廷钰
基金资助:
国家重点研发计划项目(2017YFC0210601);北京市科技新星计划项目(Z181100006218057)。
JI Ruijun1,2, XU Wenqing1, WANG Jian1, YAN Chaoyu2, ZHU Tingyu1
Received:
2017-12-01
Revised:
2018-02-24
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the National Key R&D Program of China (2017YFC0210601) and the Beijing Nova Program (Z18100006218057).
摘要:
区别于还原法脱硝技术,臭氧氧化脱硝技术将NO氧化为易溶于水的NO2和N2O5等,结合后续吸收工艺进行脱硝。臭氧氧化脱硝技术已经广泛应用于催化裂化、工业锅炉烟气NOx排放控制。结合臭氧氧化技术的工艺特点及反应动力学,分析了复杂烟气组分中NO氧化的选择性,重点关注臭氧与NO摩尔比、反应温度和停留时间等关键工艺参数对氧化产物组成的影响。通过阐述湿法与半干法脱硫工艺中的硫硝协同吸收原理,分析吸收剂、吸收气体组成、添加剂等因素对吸收效率的影响。在此基础上,提出臭氧氧化脱硝技术研究中存在的不足以及此技术未来的发展前景。
中图分类号:
纪瑞军, 徐文青, 王健, 严超宇, 朱廷钰. 臭氧氧化脱硝技术研究进展[J]. 化工学报, 2018, 69(6): 2353-2363.
JI Ruijun, XU Wenqing, WANG Jian, YAN Chaoyu, ZHU Tingyu. Research progress of ozone oxidation denitrification technology[J]. CIESC Journal, 2018, 69(6): 2353-2363.
[1] | 杨宗鑫, 王兵, 林孟雄, 等. 大气污染过程中氮氧化合物对大气的危害及防治[J]. 内蒙古石油化工, 2008, 34(21):24-26. YANG Z X, WANG B, LIN M X, et al. The hazards and control of atmospheric nitrogen oxides in air pollution[J]. Inner Mongolia Petrochemical Industry, 2008, 34(21):24-26. |
[2] | 甘丽娜. 低温V2O5-WO3/TiO2脱硝催化剂开发与应用研究[D]. 北京:中国科学院过程工程研究所, 2016. GAN L N. Development of V2O5-WO3/TiO2 catalyst and its application in NH3-SCR of NOx at low temperature[D]. Beijing:Institute of Process Engineering, Chinese Academy of Sciences, 2016. |
[3] | BRUGGEMANN T C, KEIL F J. Theoretical investigation of the mechanism of the selective catalytic reduction of nitric oxide with ammonia on H-form zeolites[J]. Journal of Physical Chemistry C, 2008, 115(112):17378-17387. |
[4] | LIU Q Y, LIU Z Y, LI C Y. Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3[J]. Chinese Journal of Catalysis, 2006, 27(7):636-646. |
[5] | REZAEI F, ROWNAGHI A A, MONJEZI S, et al. SOx/NOx removal from flue gas streams by solid adsorbents:a review of current challenges and future directions[J]. Energy & Fuels, 2015, 29(9):5467-5486. |
[6] | ZHANG W J, RABIEI S, BAGREEV A, et al. Study of NO adsorption on activated carbons[J]. Applied Catalysis B Environmental, 2008, 83(1):63-71. |
[7] | GUO Y Y, LI Y R, ZHU T Y, et al. Effects of concentration and adsorption product on the adsorption of SO2 and NO on activated carbon[J]. Energy & Fuels, 2013, 27(1):360-366. |
[8] | TAO P, SUN M H, SONG C W, et al. Effects of V2O5 and WO3 loadings on the catalytic performance of V2O5-WO3/TiO2 catalyst for SCR of NO with NH3[J]. Global Nest Journal, 2017, 19(1):160-166. |
[9] | BARMAN S, PHILIP L. Integrated system for the treatment of oxides of nitrogen from flue gases[J]. Environmental Science & Technology, 2006, 40(3):1035-1041. |
[10] | 朱廷钰, 刘青, 李玉然, 等. 钢铁烧结烟气多污染物的排放特征及控制技术[J]. 科技导报, 2014, 32(33):51-56. ZHU T Y, LIU Q, LI Y R, et al. Emission characteristics of multiple pollutants from iron-steel sintering flue gas and review of control technologies[J]. Science & Technology Review, 2014, 32(33):51-56. |
[11] | GóMEZ-GARCIA M A, PITCHON V, KIENNEMANN A. Pollution by nitrogen oxides:an approach to NOx abatement by using sorbing catalytic materials[J]. Environment International, 2005, 31(3):445-67. |
[12] | DURME J V, DEWULF J, LEYS C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:a review[J]. Applied Catalysis B Environmental, 2008, 78(3/4):324-333. |
[13] | DORA J, GOSTOMCZYK A, JAKUBIAK M, et al. Parametric studies of the effectiveness of oxidation of NO by ozone[J]. Chemical and Process Engineering-inzynieria Chemiczna I Procesowa, 2009, 30(4):621-633. |
[14] | RAJANIKANTH B S, ROUT S. Studies on nitric oxide removal in simulated gas compositions under plasma-dielectric/catalytic discharges[J]. Fuel Processing Technology, 2001, 74(3):177-195. |
[15] | BASFAR A A, FAGEEHA O I, KUNNUMMAL N, et al. Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels[J]. Fuel, 2008, 87(8):1446-1452. |
[16] | ISHIBAI Y, SATO J, AKITA S, et al. Photocatalytic oxidation of NOx by Pt-modified TiO2 under visible light irradiation[J]. Journal of Photochemistry & Photobiology A Chemistry, 2007, 188(1):106-111. |
[17] | DESHWAL B R, LEE S H, JUNG J H, et al. Study on the removal of NOx from simulated flue gas using acidic NaClO2 solution[J]. Journal of Environmental Sciences, 2008, 20(1):33-38. |
[18] | BYUN Y C, HAMILTON I P, XU T, et al. Formation of chlorinated species through reaction of SO2 with NaClO2 powder and their role in the oxidation of NO and Hg0[J]. Environmental Science & Pollution Research, 2014, 21(13):8052-8058. |
[19] | ZHAO Y, HAO R L, QI M. Integrative process of preoxidation and absorption for simultaneous removal of SO2, NO and Hg0[J]. Chemical Engineering Journal, 2015, 269:159-167. |
[20] | BYUN Y C, KO K B, CHO M, et al. Reaction pathways of NO oxidation by sodium chlorite powder[J]. Environmental Science & Technology, 2009, 43(13):5054-5059. |
[21] | 肖灵, 程斌, 莫建松, 等. 次氯酸钠湿法烟气脱硝及同时脱硫脱硝技术研究[J]. 环境科学学报, 2011, 31(6):1175-1180. XIAO L, CHENG B, MO J S, et al. Removal of NO and SO2 from flue gas by wet scrubbing using aqueous NaClO solution[J]. Acta Scientiae Circumstantiae, 2011, 31(6):1175-1180. |
[22] | LIU Y X, PANG J F, TANG A K, et al. A study on mass transfer-reaction kinetics of NO absorption by using UV/H2O2/NaOH process[J]. Fuel, 2013, 108(11):254-260. |
[23] | LIU Y X, WANG Q, YIN Y S, et al. Advanced oxidation removal of NO and SO2 from flue gas by using ultraviolet/H2O2/NaOH process[J]. Chemical Engineering Research & Design, 2014, 92(10):1907-1914. |
[24] | DING J, ZHONG Q, ZHANG S L. Catalytic efficiency of iron oxides in decomposition of H2O2 for simultaneous NOx and SO2 removal:effect of calcination temperature[J]. Journal of Molecular Catalysis A Chemical, 2014, 393(18):222-231. |
[25] | LIU Y X, ZHANG J, SHENG C D. Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Science China Technological Sciences, 2010, 53(7):1839-1846. |
[26] | LIU Y X, ZHANG J, SHENG C D. Kinetic model of NO removal from SO2-containing simulated flue gas by wet UV/H2O2 advanced oxidation process[J]. Chemical Engineering Journal, 2011, 168(1):183-189. |
[27] | JIN D S, DESHWAL B R, PARK Y S, et al. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J]. Journal of Hazardous Materials, 2006, 135(1/2/3):412-417. |
[28] | CHU H, CHIEN T W, LI S Y. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions[J]. Science of the Total Environment, 2001, 275(1):127-135. |
[29] | 代绍凯, 徐文青, 陶文亮, 等. 臭氧氧化法应用于燃煤烟气同时脱硫脱硝脱汞的实验研究[J]. 环境工程, 2014, 32(10):85-89. DAI S K, XU W Q, TAO W L, et al. Experimental research for the application of O3 oxidation in simultaneous removal of SO2, NO and Hg in coal-fired flue gas[J]. Environmental Engineering, 2014, 32(10):85-89. |
[30] | 史瑞生. BOC LoTOx/Belco EDV系统用于控制催化裂化烟气NOx排放[J]. 炼油技术与工程, 2003, 33(12):17. SHI R S. BOC LoTOx/Belco EDV system for controlling NOx emission from FCC flue gas[J]. Petroleum Refinery Engineering, 2003, 33 (12):17. |
[31] | 张杨, 王瑞, 王清和, 等. 湿法烟气脱硫脱硝技术在催化裂化装置上的应用[J]. 石油石化节能与减排, 2015, (6):38-42. ZHANG Y, WANG R, WANG Q H, et al. Application of wet flue gas desulfurization and denitrification technology in catalytic cracking unit[J]. Green Petroleum & Petrochemicals, 2015, (6):38-42. |
[32] | 陈忠基. 催化裂化烟气脱硫脱硝技术的应用[J]. 炼油技术与工程, 2013, 43(9):48-51. CHEN Z J. Application of FCC flue gas desulfurization and denitrification technology[J]. Petroleum Refinery Engineering, 2013, 43 (9):48-51. |
[33] | 赵锐铭. 催化烟气脱硫脱硝技术的比选及应用[J]. 齐鲁石油化工, 2016, 44(1):76-79. ZHAO R M. Comparison and application of catalytic flue gas desulfurization and denitrification technology[J]. Qilu Petrochemical Technology, 2016, 44 (1):76-79. |
[34] | 王明胜. EDV湿法烟气脱硫脱硝装置运行分析[J]. 广东化工, 2016, 43(5):150-151. WANG M S. The analysis of EDV wet process flue gas scrubbing and desulfurization unit operation[J]. Guangdong Chemical Industry, 2016, 43 (5):150-151. |
[35] | 秦煜栋. 催化裂化再生烟气处理技术的工业应用[J]. 能源化工, 2016, 37(3):68-71. QIN Y D. Industrial application of treatment technology for regeneration flue gas of catalytic cracking unit[J]. Energy Chemical Industry, 2016, 37 (3):68-71. |
[36] | WANG Z H, ZHOU J H, ZHU Y Q, et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection:experimental results[J]. Fuel Processing Technology, 2007, 88(8):817-823. |
[37] | MOK Y S, LEE H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique[J]. Fuel Processing Technology, 2006, 87(7):591-597. |
[38] | WANG Z H, ZHOU J H, FAN J R, et al. Direct numerical simulation of ozone injection technology for NOx control in flue gas[J]. Energy & Fuels, 2006, 20(6):2432-2438. |
[39] | WEI L S, ZHOU J H, WANG Z H, et al. Kinetic modeling of homogeneous low-temperature multi-pollutant oxidation by ozone[J]. Ozone Science & Engineering, 2007, 29(3):207-214. |
[40] | WANG H Q, ZHOU K, SUN C L, et al. Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process[J]. Journal of Environmental Sciences, 2016, 41(3):51-58. |
[41] | 王智化. 燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D]. 杭州:浙江大学, 2005. WANG Z H. Mechanism study on multi-pollution control simultaneously during coal combustion and direct numerical simulation of reaction jets flow[D]. Hangzhou:Zhejiang University, 2005. |
[42] | SUN C L, ZHAO N, ZHUANG Z K, et al. Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO2 by ozone determined by in situ IR measurements[J]. Journal of Hazardous Materials, 2014, 274(12):376-383. |
[43] | ZHANG J, ZHANG R, CHEN X, et al. Simultaneous removal of NO and SO2 from flue gas by ozone oxidation and NaOH absorption[J]. Ind. Eng. Chem. Res., 2014, 53(15):6450-6456. |
[44] | GUO S P, LV L, ZHANG J, et al. Simultaneous removal of SO2 and NOx with ammonia combined with gas-phase oxidation of NO using ozone[J]. Chem. Ind. & Chem. Eng. Q, 2015, 21(2):305-310. |
[45] | LI B, ZHAO J Y, LU J F. Numerical study of the simultaneous oxidation of NO and SO2 by ozone[J]. International Journal of Environmental Research & Public Health, 2015, 12(2):1595-1611. |
[46] | LIN F W, WANG Z H, MA Q, et al. N2O5 formation mechanism during the ozone-based low-temperature oxidation deNOx process[J]. Energy & Fuels, 2016, 30(6):5101-5107. |
[47] | STAMATE E, CHEN W, JORGENSEN L, et al. IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant[J]. Fuel, 2010, 89(5):978-985. |
[48] | 姜秀平, 刘有智. 湿法烟气脱硫技术研究进展[J]. 应用化工, 2013, 42(3):535-538. JIANG X P, LIU Y Z. Advances in research of wet flue gas desulphurization technology[J]. Applied Chemical Industry, 2013, 42 (3):535-538. |
[49] | 武春锦, 吕武华, 梅毅, 等. 湿法烟气脱硫技术及运行经济性分析[J]. 化工进展, 2015, 34(12):4368-4374. WU C J, LÜ W H, MEI Y, et al. Application and running economic analysis of wet flue gas desulfurization technology[J]. Chemical Industry and Engineering Progress, 2015, 34(12):4368-4374. |
[50] | 左莉娜, 贺前锋, 刘德华. 湿法烟气脱硫技术研究进展[J]. 环境工程, 2013, S1 (31):412-416. ZUO L N, HE Q F, LIU D H. Progress in research on technology for wet flue gas disulfurization(WFGD)[J]. Environmental Engineering, 2013, S1 (31):412-416. |
[51] | 朱廷钰, 叶猛, 齐枫, 等. 钢铁烧结烟气多污染物协同控制技术及示范[J]. 科技资讯, 2016, 14(10):166-167. ZHU T Y, YE M, QI F, et al. The collaborative control technology and demonstrations for steel sintering flue gas pollutants[J]. Science & Technology Information, 2016, 14 (10):166-167. |
[52] | 龙辉, 吕安龙. 旋转喷雾干燥法烟气脱硫工艺在600MW机组应用的可行性[J]. 中国电力, 2008, 41(4):80-83. LONG H, LÜ A L. Feasibility of flue gas desulfurization by rotating spray drying process in 600MW unit[J]. Electric Power, 2008, 41 (4):80-83. |
[53] | 张晓刚, 宋存义, 王亮, 等. 密相干塔技术在烧结烟气脱硫中的应用[J]. 钢铁, 2007, 42(7):79-82. ZHANG X G, SONG C Y, WANG L, et al. Application of dense flow absorber to desulphurization of sintering flue gas[J]. Iron & Steel, 2007, 42(7):79-82. |
[54] | 张春霞, 王海风, 齐渊洪. 烧结烟气污染物脱除的进展[J]. 钢铁, 2010, 45(12):1-11. ZHANG C X, WANG H F, QI Y H. Status of exhaust pollutant reduction in sinter process[J]. Iron & Steel, 2010, 45(12):1-11. |
[55] | JAKUBIAK M P, KORDYLEWSKI N. Pilot-scale studies on NOx removal from flue gas via NO ozonation and absorption into NaOH solution[J]. Chemical & Process Engineering, 2012, 33(3):345-358. |
[56] | SUN C L, ZHAO N, WANG H Q, et al. Simultaneous absorption of NOx and SO2 using magnesia slurry combined with ozone oxidation[J]. Energy & Fuels, 2015, 29(5):3276-3283. |
[57] | 张相. 臭氧结合钙基吸收多种污染物及副产物提纯的试验与机理研究[D]. 杭州:浙江大学, 2012. ZHANG X. Experimental and mechanism investigation on multi-pollutant absorption by ozone with calcium based scrubbing and by-product treatment[D]. Hangzhou:Zhejiang University, 2012. |
[58] | CHEN L K, LIN J W, YANG C L. Absorption of NO2 in a packed tower with Na2SO3 aqueous solution[J]. Environmental Progress, 2002, 21(4):225-230. |
[59] | GAO X, DU Z, DING H L, et al. Effect of gas-liquid phase compositions on NO2 and NO absorption into ammonium-sulfite and bisulfite solutions[J]. Fuel Processing Technology, 2011, 92(8):1506-1512. |
[60] | SKALSKA K, MILLER J S, LEDALOWICZ S. Intensification of NOx absorption process by means of ozone injection into exhaust gas stream[J]. Chemical Engineering & Processing Process Intensification, 2012, 61(4):69-74. |
[61] | ZHANG X W, TONG H L, ZHANG H, et al. Nitrogen oxides absorption on calcium hydroxide at tow temperature[J]. Industrial & Engineering Chemistry Research, 2008, 47(11):3827-3833. |
[62] | ZHENG C H, XU C R, ZHANG Y X, et al. Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system[J]. Applied Energy, 2014, 129(129):187-194. |
[63] | TANG N, LIU Y, WANG H Q, et al. Enhanced absorption process of NO2 in CaSO3 slurry by the addition of MgSO4[J]. Chemical Engineering Journal, 2010, 160(1):145-149. |
[64] | SUN Y, MENG Y, GUO X Y, et al. Study of nitrogen oxide absorption in the calcium sulfite slurry[J]. Journal of Material Cycles & Waste Management, 2016, 18(4):618-624. |
[65] | WANG Z H, ZHANG X, ZHOU Z J, et al. Effect of additive agents on the simultaneous absorption of NO2 and SO2 in the calcium sulfite slurry[J]. Energy & Fuels, 2012, 26(9):5583-5589. |
[66] | 马强. 烟气中多种污染物超低排放的活性分子氧化及一体化脱除机理研究[D]. 杭州:浙江大学, 2016. MA Q. Study on active molecule oxidation and removal mechanism of ultra-low emissions of multiple flue gas pollutant[D]. Hangzhou:Zhejiang University, 2016. |
[67] | 孙承朗. 燃煤工业锅炉臭氧氧化结合镁基湿法联合脱硫脱硝工艺研究[D]. 杭州:浙江大学, 2015. SUN C L. Simultaneous desulfuration and denitrification technology for industrial boiler flue gas:ozone oxidation combined with magnesia based wet scrubbing method[D]. Hangzhou:Zhejiang University, 2015. |
[68] | 王鸿, 朱天乐, 王美艳. 气相组分对氨吸收同步脱除模拟烟气SO2和NOx的影响[J]. 环境科学, 2013, 34(1):21-26. WANG H, ZHU T L, WANG M Y. Effects of gaseous compositions on the simultaneous removal of NOx and SO2 from simulated flue gas by ammonia absorption[J]. Environmental Science, 2013, 34(1):21-26. |
[69] | CHEN G Q, GAO J H, GAO J M, et al. Simultaneous removal of SO2 and NOx by calcium hydroxide at low temperature:effect of SO2 absorption on NO2 removal[J]. Industrial & Engineering Chemistry Research, 2010, 49(23):12140-12147. |
[70] | CHEN G Q, GAO J H, WANG S, et al. Enhancement effects of gas components on NO removal by calcium hydroxide[J]. Industrial & Engineering Chemistry Research, 2010, 49(3):1450-1456. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[8] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[9] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[10] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[11] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[12] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[15] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||