化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3026-3037.doi: 10.11949/0438-1157.20220341

• 催化、动力学与反应器 • 上一篇    下一篇

磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究

陈永安1,2(),周安宁1,2(),李云龙1,3,石智伟1,2,贺新福1,2,焦卫红1,2   

  1. 1.西安科技大学化学与化工学院,陕西 西安 710054
    2.自然资源部煤炭资源勘探与综合利用重点实验室,陕西 西安 710021
    3.陕西煤业化工集团神木天元化工有限公司,陕西 榆林 719319
  • 收稿日期:2022-03-06 修回日期:2022-04-24 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 周安宁 E-mail:2920452554@qq.com;psu564@139.com
  • 作者简介:陈永安(1997—),男,硕士研究生, 2920452554@qq.com
  • 基金资助:
    陕西省煤炭联合基金项目(2019JPL-10)

Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts

Yong’an CHEN1,2(),Anning ZHOU1,2(),Yunlong LI1,3,Zhiwei SHI1,2,Xinfu HE1,2,Weihong JIAO1,2   

  1. 1.School of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
    2.Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, MNR, Xi’an 710021, Shaanxi, China
    3.Shaanxi Coal Industry Chemical Group, Shenmu Tianyuan Chemical Co. , Yulin 719319, Shaanxi, China
  • Received:2022-03-06 Revised:2022-04-24 Published:2022-07-05 Online:2022-08-01
  • Contact: Anning ZHOU E-mail:2920452554@qq.com;psu564@139.com

摘要:

采用溶胶-凝胶法制得MgFe2O4前体,经焙烧得到MgFe2O4催化剂,再经St?ber法制得核壳结构催化剂MgFe2O4@SiO2和MgFe2O4@SiO2@HZSM-5(MSH),利用VSM、XRD、SEM、FT-IR、N2物理吸附等手段研究了催化剂的磁性能和结构特征;在固定床反应器上,考察了N2气氛下磁性催化剂对补连塔富油煤的催化热解特性及回收再生性能。结果表明:MgFe2O4为立方尖晶石结构,饱和磁化强度达到181.50 emu/g,具有良好热稳定性能。上述系列磁性催化剂均呈现出良好的催化活性,其中MSH催化活性最好。与非催化热解相比,MSH催化热解焦油产率提高了57.7%,焦油中脂肪烃和苯类含量增加约2倍,稠环芳烃含量下降8.6%~9.8%。采用磁选方法可有效实现催化剂回收,经700℃下焙烧处理,可实现回收催化剂的再生。SiO2包覆有助于提高核壳结构催化剂的磁热稳定性和催化寿命。

关键词: 催化热解, 磁性MgFe2O4, 包覆, 焦油, 回收, 再生

Abstract:

The MgFe2O4 precursor was prepared by the sol-gel method, the MgFe2O4 catalyst was obtained by calcination, and the core-shell structure catalyst MgFe2O4@SiO2 and MgFe2O4@SiO2@HZSM-5 (MSH) were prepared by the St?ber method. The magnetic properties and structural characteristics of the catalysts were investigated by VSM, XRD, SEM, FT-IR, and N2 physical adsorption. In a fixed bed reactor, under an N2 atmosphere, the magnetic catalysts were investigated for the catalytic properties and recovery and regeneration of tar-rich coal from the Bulianta (BLT). The results show that the MgFe2O4 has a cubic spinel structure with a saturation magnetization of 181.50 emu/g and good thermal stability. The above series of magnetic catalysts all show good catalytic activity, among which MSH has the best catalytic activity. Compared with non-catalytic pyrolysis, the tar yield of MSH catalytic pyrolysis increased by 57.7%, the content of aliphatic hydrocarbons and benzene in the tar increased by about 2 times, and the content of polycyclic aromatic hydrocarbons decreased by 8.6%—9.8%. The magnetic separation method can effectively realize the recovery of the catalyst, and regeneration of the catalyst can be realized by roasting in 700℃. The SiO2 coating helps to improve the magnetocaloric stability and catalytic lifetime of the core-shell catalyst.

Key words: catalytic pyrolysis, magnetic MgFe2O4, coating, tar, recovery, regeneration

中图分类号: 

  • TQ 530.2

表1

补连塔煤的工业分析与元素分析"

Proximate analysis/%(mass,ad)Ultimate analysis/%(mass,ad)
MAVFCCHNSO
9.584.430.4255.682.425.161.230.2610.93

图1

MgFe2O4系列催化剂制备流程"

图2

实验装置"

图3

磁性催化剂催化热解回收再生过程概念流程图"

图4

磁性催化剂的SEM图"

图5

磁性催化剂的XRD谱图、 N2吸脱附等温曲线、FT-IR谱图和VSM磁化曲线"

表2

磁性催化剂的比表面积和孔结构参数"

催化剂SBET/(m2/g)DBJH/nmVtotal/(10-2 cm3/g)
MgFe2O49.9426.197.32
MgFe2O4@SiO235.3514.0114.82
MSH321.134.207.32

图6

MgFe2O4的XRD与VSM分析"

表3

磁性催化剂对热解产物分布的影响"

催化剂半焦产率/%焦油产率/%气体产率/%水产率/%
none

68.13

65.76

64.94

65.67

9.42

14.25

12.16

14.86

16.19

14.46

16.73

14.82

6.26

5.53

6.17

4.61

MgFe2O4
MgFe2O4@SiO2
MSH

表4

不同催化剂上BLT-coal热解焦油组分含量"

催化剂苯类/%酚类/%脂肪 烃类/%稠环芳 烃类/%其他/%
none1.3718.0412.8534.2233.52
MgFe2O44.1818.5818.2828.6730.29
MgFe2O4@SiO24.0218.2117.9828.9130.88
MSH4.1217.8423.5325.6329.88

图7

磁性催化剂催化热解机理① 煤常规裂解及油气内扩散过程;② 煤常规热解生成的自由基之间的缩聚脱氢形成半焦;③ 煤大分子界面催化裂解形成油气;④ 油气扩散与催化裂化反应形成轻质油及煤气;⑤ 裂解自由基二次缩聚形成半焦或在催化剂表面积炭"

图8

再生催化剂VSM磁化曲线"

表5

再生磁性催化剂对热解产物分布的影响"

催化剂半焦产率/%焦油产率/%气体产率/%水产率/%
1R-MgFe2O465.9713.2314.985.82
1R-MgFe2O4@SiO265.0111.5416.986.47
1R-MSH66.6313.0815.125.17
1 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5): 1365-1377.
Wang S M, Shi Q M, Wang S Q, et al. Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J]. Journal of China Coal Society, 2021, 46(5): 1365-1377.
2 马丽, 拓宝生. 陕西富油煤资源量居全国之首 榆林可“再造一个大庆油田”[J]. 陕西煤炭, 2020, 39(1): 220-222.
Ma L, Tuo B S. Shaanxi’s oil-rich coal resources rank first in the country. Yulin can “rebuild a Daqing Oilfield”[J]. Shaanxi Coal, 2020, 39(1): 220-222.
3 煤炭资讯网. 推进富油煤合理开发利用[EB/OL]. [2022-03-24]. .
Coal Information Network. Promoting the rational development and utilization of oil-rich coal[EB/OL]. [2022-03-24]. .
4 李勇, 闫伦靖, 李晓荣, 等. 酸/碱催化剂对低阶煤热解挥发分转化行为的作用机制研究[J]. 化工学报, 2022, 73(3): 1173-1183.
Li Y, Yan L J, Li X R, et al. Study on the mechanism of acid/base catalyst on the release behavior of volatiles during low rank coal pyrolysis[J]. CIESC Journal, 2022, 73(3): 1173-1183.
5 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707.
Chen Z H, Gao S Q, Xu G W. Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707.
6 Deng X L, Deng J, He R Z, et al. Effects of Ba and Mg promoters on gas release from Fe catalyzed coal pyrolysis: effects of different precursors[J]. Fuel, 2022, 308: 121977.
7 Zhang C, Wu R C, Xu G W. Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals[J]. Energy & Fuels, 2014, 28(1): 236-244.
8 Wang D, Chen Z H, Li C M, et al. High-quality tar production from coal in an integrated reactor: rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed[J]. Fuel, 2021, 285: 119156.
9 Niu B, Liu R C, Zhang J T, et al. Effect of O2/CH4 atmosphere on tar production during coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 159: 105317.
10 Zhang X H, Zhu J L, Ban Y P, et al. Effect of Fe2O3 on the pyrolysis of two demineralized coal using in-situ pyrolysis photoionization time-of-flight mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 589-597.
11 Yang Z, Cao J P, Liu T L, et al. Controllable hollow HZSM-5 for high shape-selectivity to light aromatics from catalytic reforming of lignite pyrolysis volatiles[J]. Fuel, 2021, 294: 120427.
12 Liu T L, Cao J P, Zhao X Y, et al. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst[J]. Fuel Processing Technology, 2017, 160: 19-26.
13 Han J Z, Liu X X, Yue J R, et al. Catalytic upgrading of in situ coal pyrolysis tar over Ni-char catalyst with different additives[J]. Energy & Fuels, 2014, 28(8): 4934-4941.
14 Liguori F, Moreno-Marrodan C, Barbaro P. Metal nanoparticles immobilized on ion-exchange resins: a versatile and effective catalyst platform for sustainable chemistry[J]. Chinese Journal of Catalysis, 2015, 36(8): 1157-1169.
15 施达. 磁性双功能催化剂的制备、结构表征及其甲醇催化转化反应性能研究[D]. 北京: 北京化工大学, 2017.
Shi D. Preparation of magnetic difunctional catalysts, characterization of structure and their catalytic performance for methanol catalysis activity[D]. Beijing: Beijing University of Chemical Technology, 2017.
16 姜少宁, 雷建民, 张敏刚, 等. 铁基非晶软磁合金的制备及磁性能研究[J]. 电子元件与材料, 2009, 28(7): 30-32.
Jiang S N, Lei J M, Zhang M G, et al. Preparation and magnetic properties study of Fe-based amorphous soft magnetic alloys[J]. Electronic Components and Materials, 2009, 28(7): 30-32.
17 惠希东, 吕旷, 斯佳佳, 等. 高饱和磁化强度铁基非晶纳米晶软磁合金发展概况[J]. 工程科学学报, 2018, 40(10): 1158-1167.
Hui X D, Lyu K, Si J J, et al. Development of Fe-based amorphous and nanocrystalline alloys with high saturation flux density[J]. Chinese Journal of Engineering, 2018, 40(10): 1158-1167.
18 Shakir I, Sarfraz M, Ali Z, et al. Magnetically separable and recyclable graphene-MgFe2O4 nanocomposites for enhanced photocatalytic applications[J]. Journal of Alloys and Compounds, 2016, 660: 450-455.
19 Oladipo A A, Ifebajo A O, Gazi M. Magnetic LDH-based CoO-NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions[J]. Applied Catalysis B: Environmental, 2019, 243: 243-252.
20 Zhang E L, Wu J Y, Wang G S, et al. Efficient Fenton oxidation of Congo red dye by magnetic MgFe2O4 nanorods[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(5): 4727-4732.
21 Rath C, Anand S, Das R P, et al. Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn-Zn ferrite[J]. Journal of Applied Physics, 2002, 91(4): 2211-2215.
22 Roumaih K. Effect of temperature on the dielectric and magnetic properties of NiFe2O4@MgFe2O4 and ZnFe2O4@MgFe2O4 core-shell[J]. Physica Scripta, 2021, 96(12): 125809.
23 Puspitarum D L, Hermawan A, Suharyadi E. The influence of PEG-4000 and silica on crystal structure and magnetic properties of magnesium ferrite (MgFe2O4) nanoparticles[C/OL]// AIP Conference Proceedings. Semarang, Indonesia, 2016.
24 Thakare J G, Pandey C, Mahapatra M M, et al. Thermal barrier coatings—a state of the art review[J]. Metals and Materials International, 2021, 27(7): 1947-1968.
25 张军兴, 周安宁, 闫宁, 等. 磁性Mo/HZSM-5@SiO2@Fe3O4催化剂可控制备及煤催化热解[J]. 煤炭学报, 2021, 46(6): 1985-1994.
Zhang J X, Zhou A N, Yan N, et al. Controlled preparation and catalytic pyrolysis of coal over magnetic Mo/HZSM-5@SiO2@Fe3O4 catalyst[J]. Journal of China Coal Society, 2021, 46(6): 1985-1994.
26 Zhao W R, Gu J L, Zhang L X, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. Journal of the American Chemical Society, 2005, 127(25): 8916-8917.
27 孙冬, 孙博, 裴燕, 等. 壳层厚度对骨架Fe@HZSM-5核壳催化剂费托合成催化性能的影响[J]. 化学学报, 2021, 79(6): 771-777.
Sun D, Sun B, Pei Y, et al. Effect of shell thickness on skeletal Fe@HZSM-5 core-shell catalysts for Fischer-Tropsch synthesis[J]. Acta Chimica Sinica, 2021, 79(6): 771-777
28 Wang J, Liu X, Li L . et al. Performance improvement of Fe-6.5Si soft magnetic composites with hybrid phosphate-silica insulation coatings[J]. Journal of Central South University, 2021, 28(4): 1266-1278.
29 濮思菁, 刘汝庚, 刘国柱, 等. 表面性质对HZSM-5分子筛涂层结构的影响[C]//第十七届全国分子筛学术大会. 宁夏, 2013.
Pu S J, Liu R G, Liu G Z, et al. Effect of surface properties on the structure of HZSM-5 molecular sieve coating[C]//The 17th Chinese Zeolite Conference. Ningxia, 2013.
30 Tang W S, Su Y, Li Q, et al. Superparamagnetic magnesium ferrite nano-adsorbent for effective arsenic (Ⅲ, Ⅴ) removal and easy magnetic separation[J]. Water Research: A Journal of the International Water Association, 2013, 47(11): 3624-3634.
31 张淑平. CoFe2O4/SiO2材料的制备及其磁性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2005.
Zhang S P. Preparation and magnetic properties of CoFe2O4/SiO2 materials[D]. Harbin: Harbin Institute of Technology, 2005.
32 李云龙, 周安宁, 石智伟, 等. 磁性Mo-Ni/HZSM-5@SiO2@Fe3O4催化剂对补连塔煤热解的影响[J]. 煤炭转化, 2021, 44(6): 26-33.
Li Y L, Zhou A N, Shi Z W, et al. Effects of magnetic Mo-Ni/HZSM-5@SiO2@Fe3O4 catalyst on pyrolysis of bulianta coal[J]. Coal Conversion, 2021, 44(6): 26-33.
33 杨珍, 曹景沛, 朱陈, 等. B-ZSM-5酸调控及催化褐煤热解挥发分制轻质芳烃研究[J]. 化工学报, 2021, 72(11): 5633-5642.
Yang Z, Cao J P, Zhu C, et al. Catalytic conversion of lignite pyrolysis volatiles for enriching light aromatics over B-ZSM-5[J]. CIESC Journal, 2021, 72(11): 5633-5642.
34 Yousefi A, Almasi Kashi M, Afghahi S S S. Enhancement and recovery of magnetic exchange coupling properties in SrFe11AlO19@NiFe2O4 core-shell structure by multiple TiO2 and SiO2 nanolayer shells[J]. Journal of Magnetism and Magnetic Materials, 2021, 530: 167932.
35 王俊丽, 吕婧, 李淑英, 等.基于贝壳衍生CaO的低阶煤催化热解特性及热解机理研究[J/OL]. 煤炭转化, 2022, [2022-04-20]. .
Wang J L, Lyu J, Li S Y, et al. Catalytic pyrolysis characteristics and pyrolysis mechanism of low rank coal with shell-derived CaO[J/OL]. Coal Conversion,2022, [2022-04-20]. .
36 刘芸, 张源, 郭娅男, 等. 不同煤阶煤热解气化特性及机理研究[J]. 科学技术与工程, 2021, 21(18): 7672-7677.
Liu Y, Zhang Y, Guo Y N, et al. Pyrolysis and gasification of coal with different ranks: characteristics and mechanism[J]. Science Technology and Engineering, 2021, 21(18): 7672-7677.
37 刘振宇. 重质有机资源热解过程中的自由基化学[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 8-24.
Liu Z Y. Radical chemistry in the pyrolysis of heavy organics[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 8-24.
38 刘振宇. 煤快速热解制油技术问题的化学反应工程根源: 逆向传热与传质[J]. 化工学报, 2016, 67(1): 1-5.
Liu Z Y. Origin of common problems in fast coal pyrolysis technologies for tar: the countercurrent flow of heat and volatiles[J]. CIESC Journal, 2016, 67(1): 1-5.
39 陈冠益, 杨会军, 姚金刚, 等. 两段式固定床芦竹催化热解实验研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(1): 59-64.
Chen G Y, Yang H J, Yao J G, et al. Catalytic pyrolysis of arundo donax in a two-stage fixed-bed reactor[J]. Journal of Tianjin University (Science and Technology), 2017, 50(1): 59-64.
40 Zhang Y, Zheng Y. Co-gasification of coal and biomass in a fixed bed reactor with separate and mixed bed configurations[J]. Fuel, 2016, 183: 132-138.
41 潘庆谊, 张中太. MgFe2O4尖晶石型固溶体的导电性和缺陷结构[J]. 无机材料学报, 1988, 3(3): 245-250.
Pan Q Y, Zhang Z T. Defect structure and conduction in magnesium ferrite[J]. Journal of Inorganic Materials, 1988, 3(3): 245-250.
42 Song Q, Zhao H Y, Chang S Q, et al. Study on the catalytic pyrolysis of coal volatiles over hematite for the production of light tar[J]. Journal of Analytical and Applied Pyrolysis, 2020, 151: 104927.
43 杨英杰, 杨赫, 朱家龙, 等. 淖毛湖煤慢速热解过程官能团相互作用[J]. 化工学报, 2022, 73(2): 865-875.
Yang Y J, Yang H, Zhu J L, et al. Interaction between functional groups during slow pyrolysis of Naomaohu coal[J]. CIESC Journal, 2022, 73(2): 865-875.
44 宋超, 叶茂, 刘中民. 甲醇制烯烃工艺催化剂再生过程的CFD-DEM模拟[J]. 中国粉体技术, 2020, 26(3): 39-45.
Song C, Ye M, Liu Z M. CFD-DEM simulation of catalyst regeneration in methanol to olefins process[J]. China Powder Science and Technology, 2020, 26(3): 39-45.
45 任雪宇, 曹景沛, 赵小燕, 等. ZSM-5分子筛孔道调控及催化褐煤热解挥发物制轻质芳烃的研究[C]//第三届能源转化化学与技术研讨会. 厦门, 2018.
Ren X Y, Cao J P, Zhao X Y, et al. Study on ZSM-5 molecular sieve pore channel regulation and catalytic pyrolysis of lignite to produce light aromatics[C]// The 3rd Energy Conversion Chemistry and Technology Symposium. Xiamen, 2018.
[1] 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
[2] 刘庆祎, 肖桐, 孙文杰, 张家豪, 刘昌会. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882.
[3] 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
[4] 徐劲松, 林敏, 陈晓平, 马吉亮, 耿鹏飞, 鲍学兵, 刘道银, 梁财. 不锈钢酸洗废混酸流化床焙烧再生特性的实验研究[J]. 化工学报, 2022, 73(5): 2242-2250.
[5] 姜焱龙, 张妮, 李淡然, 朱冰冰, 蒋怡晨, 陈海军, 朱跃钊. 基于COSMO-RS方法筛选离子液体用于焦油脱除[J]. 化工学报, 2022, 73(4): 1704-1713.
[6] 许世佩, 王超, 李庆远, 张炳康, 许世伟, 张雪琴, 王诗颖, 丛梦晓. 氧化钙对油基钻屑热脱附产物影响的研究[J]. 化工学报, 2022, 73(4): 1724-1731.
[7] 李勇, 闫伦靖, 李晓荣, 靳鑫, 李挺, 刘倩, 王美君, 孔娇, 常丽萍, 鲍卫仁. 酸/碱催化剂对低阶煤热解挥发分转化行为的作用机制研究[J]. 化工学报, 2022, 73(3): 1173-1183.
[8] 周云龙, 林东尧, 叶校源, 孙博. 常见离子对玉米秸秆为牺牲剂的光催化制氢影响[J]. 化工学报, 2022, 73(2): 722-729.
[9] 张殷豪, 詹菲, 李城序, 于畅, 邱介山. 铵钒青铜基浓差流动电池的盐差发电性能研究[J]. 化工学报, 2022, 73(2): 857-864.
[10] 黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711.
[11] 马铭宇, 王超, 李运甲, 李长明, 刘雪景, 高士秋, 余剑. 高炉煤气中羰基硫水解吸附催化剂的制备及性能研究[J]. 化工学报, 2022, 73(1): 275-283.
[12] 武鹏, 王芳, 曾玺, 战洪仁, 岳君容, 王婷婷, 许光文. 微型流化床中焦油热裂解和水蒸气重整的反应特性及动力学对比[J]. 化工学报, 2022, 73(1): 362-375.
[13] 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96.
[14] 张照曦,钟梅,李建,亚力昆江?吐尔逊. 改性蒙脱土对新疆和丰煤热解行为的影响[J]. 化工学报, 2022, 73(1): 402-410.
[15] 付鹏波,田金乙,吕文杰,黄渊,刘毅,卢浩,杨强,修光利,汪华林. 物理法水处理技术[J]. 化工学报, 2022, 73(1): 59-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!