化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4054-4061.DOI: 10.11949/0438-1157.20220686
袁妮妮(), 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰()
收稿日期:
2022-05-12
修回日期:
2022-06-02
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
郭庆杰
作者简介:
袁妮妮(1986—),女,博士研究生,讲师,yuannini727@163.com
基金资助:
Nini YUAN(), Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO()
Received:
2022-05-12
Revised:
2022-06-02
Online:
2022-09-05
Published:
2022-10-09
Contact:
Qingjie GUO
摘要:
借助ReaxFF-MD方法,对化学链燃烧过程Al2O3负载Fe2O3载氧体(Fe2O3/Al2O3)表面CH4反应过程模拟,探究Al2O3惰性载体对Fe2O3-CH4体系燃烧过程的调控机制。研究发现添加Al2O3惰性载体改变了化学链燃烧过程中Fe2O3载氧体反应性和Fe2O3/Al2O3-CH4反应体系的热力学和动力学行为。主要是促进了Fe2O3载氧体表面CH4氧化,并对CH4反应过程、中间体、产物及其反应速率和放热量等均具有显著促进和调控作用。原因在于Al2O3惰性载体对Fe2O3活性相中晶格氧的活化作用促进了晶格氧的迁移-扩散-释放。添加惰性载体增强了Fe2O3载氧体在化学链燃烧过程晶格氧释放速率和释放量,有利于CH4氧化燃烧向合成气的高效、清洁转化,强化了化学链燃烧过程,满足当前能源高效转化和碳减排目标。
中图分类号:
袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061.
Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation[J]. CIESC Journal, 2022, 73(9): 4054-4061.
图2 化学链燃烧过程CH4在Fe2O3/Al2O3载氧体表面不同温度氧化势能曲线 (a) 和CH4分子数目变化趋势 (b) (1 kcal=4.18 kJ)
Fig.2 Potential energy curves (a) and the number of CH4 molecules (b) of the oxidation of CH4 on the surface of Fe2O3/Al2O3 oxygen carriersin chemical looping combustion at various temperature
图3 3000 K化学链燃烧过程CH4分子在载氧体表面反应过程产物分布及其分子数目
Fig.3 Production distribution and their molecule number of the reaction process of CH4 on thesurface of oxygen carriers during chemical looping combustion at 3000 K
图4 化学链燃烧过程CH4在Fe2O3/Al2O3载氧体表面反应过程及产物示意图
Fig.4 Schematic of the reaction process and production distribution of CH4 on the surface of Fe2O3/Al2O3oxygen carrier during chemical looping combustion
图5 化学链燃烧过程CH4在Fe2O3载氧体表面氧化过程及产物示意图
Fig.5 Schematic of the oxidation process and production distribution of CH4 on the surface of Fe2O3 oxygencarrier during chemical looping combustion
图6 3000 K时CH4分别在Fe2O3和Fe2O3/Al2O3载氧体表面氧化反应势能曲线
Fig.6 Potential energy curves of the reaction process of CH4 on the surface of Fe2O3 and Fe2O3/Al2O3 oxygen carrier at 3000 K, respectively
图7 化学链燃烧过程Fe2O3/Al2O3-CH4体系(a)和Fe2O3-CH4体系(b)作用机制示意图
Fig.7 Schematic of the interaction mechanism of Fe2O3/Al2O3-CH4 system (a) and Fe2O3-CH4 system (b) during chemical looping combustion process
1 | Fan L S, Zeng L, Luo S W. Chemical-looping technology platform[J]. AIChE Journal, 2015, 61(1): 2-22. |
2 | Wang P, Means N, Shekhawat D, et al. Chemical-looping combustion and gasification of coals and oxygen carrier development: a brief review[J]. Energies, 2015, 8(10): 10605-10635. |
3 | Wang Y X, Hu X D, Guo T, et al. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 493-504. |
4 | 周石杰, 任祯, 杨宇森, 等. 不同形貌金属氧化物的制备及其在工业催化反应中的应用[J]. 化工学报, 2021, 72(6): 2972-3001. |
Zhou S J, Ren Z, Yang Y S, et al. Preparation and application of metal oxides with various morphology for industrial catalysis[J]. CIESC Journal, 2021, 72(6): 2972-3001. | |
5 | Luo S W, Zeng L, Fan L S. Chemical looping technology: oxygen carrier characteristics[J]. Annual Review of Chemical and Biomolecular Engineering, 2015, 6: 53-75. |
6 | Zeng L, Cheng Z, Fan J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364.[66] |
7 | 袁妮妮, 白红存, 安梅, 等. 化学链过程中Cu低浓度掺杂改性Fe-基载氧体反应性能:实验与理论模拟[J]. 化工学报, 2020, 71(11): 5294-5302. |
Yuan N N, Bai H C, An M, et al. Reactivity of low-concentration Cu-doped modified Fe-based oxygen carrier in chemical looping: experiments and theoretical simulations[J]. CIESC Journal, 2020, 71(11): 5294-5302. | |
8 | Zhang X L, Gao Z D, Liu Y Z, et al. Experimental and mechanistic study on chemical looping combustion of caking coal[J]. Chinese Journal of Chemical Engineering, 2021, 37: 89-96. |
9 | Zhang J S, Guo Q J, Liu Y Z, et al. Preparation and characterization of Fe2O3/Al2O3 using the solution combustion approach for chemical looping combustion[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12773-12781. |
10 | Bohn C D, Cleeton J P, Müller C R, et al. Stabilizing iron oxide used in cycles of reduction and oxidation for hydrogen production[J]. Energy & Fuels, 2010, 24(7): 4025-4033. |
11 | Kierzkowska A M, Bohn C D, Scott S A, et al. Development of iron oxide carriers for chemical looping combustion using sol-gel[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5383-5391. |
12 | 程显名. 典型载氧体晶格氧释放规律及其化学链燃烧性能优化[D]. 昆明: 昆明理工大学, 2019. |
Cheng X M. Typical oxygen carrier lattice oxygen release rules and its chemical looping combustion performance optimization[D]. Kunming: Kunming University of Science and Technology, 2019. | |
13 | 王保文, 赵海波, 郑瑛, 等. 惰性载体 Al2O3对 Fe2O3及CuO氧载体煤化学链燃烧的影响[J]. 中国电机工程学报, 2011, 31(32): 53-61. |
Wang B W, Zhao H B, Zheng Y, et al. Effect of inert support Al2O3 on the chemical looping combustion of coal with Fe2O3 and CuO-based oxygen carrier[J]. Proceedings of the CSEE, 2011, 31(32): 53-61. | |
14 | Chen X, Zhang S, Xiao R, et al. Modification of traditionally impregnated Fe2O3/Al2O3 oxygen carriers by ultrasonic method and their performance in chemical looping combustion[J]. Greenhouse Gases: Science and Technology, 2017, 7(1): 65-77. |
15 | 程煜, 刘永卓, 田红景, 等. 铁基复合载氧体煤化学链气化反应特性及机理[J]. 化工学报, 2013, 64(7): 2587-2595. |
Cheng Y, Liu Y Z, Tian H J, et al. Chemical-looping gasification reaction characteristics and mechanism of coal and Fe-based composite oxygen carriers[J]. CIESC Journal, 2013, 64(7): 2587-2595. | |
16 | Bolt P H, Habraken F H P M, Geus J W. Formation of nickel, cobalt, copper, and iron aluminates from α- and γ-alumina-supported oxides: a comparative study[J]. Journal of Solid State Chemistry, 1998, 135(1): 59-69. |
17 | Abad A, García-Labiano F, de Diego L F, et al. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion[J]. Energy & Fuels, 2007, 21(4): 1843-1853. |
18 | 王保文. 化学链燃烧技术中铁基氧载体的制备及其性能研究[D]. 武汉: 华中科技大学, 2008. |
Wang B W. Research on combustion synthesis of Fe2O3-based oxygen carrier and its performance used in chemical looping combustion[D]. Wuhan: Huazhong University of Science and Technology, 2008. | |
19 | Qin W, Wang Y, Dong C Q, et al. The synergetic effect of metal oxide support on Fe2O3 for chemical looping combustion: a theoretical study[J]. Applied Surface Science, 2013, 282: 718-723. |
20 | Qin W, Chen Q L, Wang Y, et al. Theoretical study of oxidation-reduction reaction of Fe2O3 supported on MgO during chemical looping combustion[J]. Applied Surface Science, 2013, 266: 350-354. |
21 | Zhu W B, Gong H, Han Y, et al. Development of a reactive force field for simulations on the catalytic conversion of C/H/O molecules on Cu-metal and Cu-oxide surfaces and application to Cu/CuO-based chemical looping[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12512-12520. |
22 | Li X X, Zheng M, Ren C X, et al. ReaxFF molecular dynamics simulations of thermal reactivity of various fuels in pyrolysis and combustion[J]. Energy & Fuels, 2021, 35(15): 11707-11739. |
23 | Qiu Y, Zhong W Q, Shao Y J, et al. Reactive force field molecular dynamics (ReaxFF MD) simulation of coal oxy-fuel combustion[J]. Powder Technology, 2020, 361: 337-348. |
24 | Han Y, Jiang D D, Zhang J L, et al. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Frontiers of Chemical Science and Engineering, 2016, 10(1): 16-38. |
25 | Diao Z J, Zhao Y M, Chen B, et al. ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 618-624. |
26 | te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967. |
27 | Zheng Y X, Hong S, Psofogiannakis G, et al. Modeling and in situ probing of surface reactions in atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15848-15856. |
28 | Abolfath R M, van Duin A C T, Brabec T. Reactive molecular dynamics study on the first steps of DNA damage by free hydroxyl radicals[J]. The Journal of Physical Chemistry. A, 2011, 115(40): 11045-11049. |
29 | Liu X L, Li X X, Liu J, et al. Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics[J]. Polymer Degradation and Stability, 2014, 104: 62-70. |
30 | 贺红坡. 煤中含氮模型化合物富氧燃烧的ReaxFF反应分子动力学研究[D]. 武汉: 华中科技大学, 2017. |
He H P. Study of the nitrogen-containing model compounds in coal oxy-fuel combustion via ReaxFF molecular dynamics simulation[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
31 | Hong D K, Guo X. A reactive molecular dynamics study of CH4 combustion in O2/CO2/H2O environments[J]. Fuel Processing Technology, 2017, 167: 416-424. |
32 | Dong C Q, Sheng S H, Qin W, et al. Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system[J]. Applied Surface Science, 2011, 257(20): 8647-8652. |
33 | Xiao X B, Qin W, Wang J Y, et al. Effect of surface Fe-S hybrid structure on the activity of the perfect and reduced α-Fe2O3(001) for chemical looping combustion[J]. Applied Surface Science, 2018, 440: 29-34. |
34 | Lin C F, Qin W, Dong C Q. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: a DFT study[J]. Applied Surface Science, 2016, 387: 720-731. |
35 | Huang L, Tang M C, Fan M H, et al. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Applied Energy, 2015, 159: 132-144. |
36 | Burger C M, Zhu W B, Ma G M, et al. Experimental and computational investigations of ethane and ethylene kinetics with copper oxide particles for chemical looping combustion[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5249-5257. |
37 | Hu J J, Li C, Zhang Q G, et al. Using chemical looping gasification with Fe2O3/Al2O3 oxygen carrier to produce syngas (H2 +CO) from rice straw[J]. International Journal of Hydrogen Energy, 2019, 44(6): 3382-3386. |
38 | 冯于川. 化学链重整制氢技术中镍基及铁基载氧体的反应性及其机理研究[D]. 武汉: 华中科技大学, 2019. |
Feng Y C. Study of reactivity and mechanism of nickel-and iron-based oxygen carriers in chemical looping reforming[D]. Wuhan: Huazhong University of Science and Technology, 2019. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[4] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[5] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[6] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[7] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[8] | 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. 水合物热分解Stefan相变模型解的存在性及Laplace变换求解[J]. 化工学报, 2023, 74(4): 1746-1754. |
[9] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[10] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[11] | 何金峰, 李秀珍, 寇建耀, 陶庭杰, 余灿, 刘欢, 陈永元, 赵豪健, 江大好, 李小年. 乙醇制高级醇有序介孔氧化铝负载铜基催化剂研究[J]. 化工学报, 2023, 74(3): 1082-1091. |
[12] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[13] | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
[14] | 唐翠萍, 张雅楠, 梁德青, 李祥. 聚乙烯己内酰胺链端改性及其对甲烷水合物形成的抑制作用研究[J]. 化工学报, 2022, 73(5): 2130-2139. |
[15] | 刘薇薇, 崔国民, 张璐, 肖媛, 杨其国, 张冠华. 一种应用于换热网络综合的阻尼优化方法[J]. 化工学报, 2022, 73(5): 2060-2072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||